AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION
Santi Seguí, Michal Drozdzal, Petia Radeva, Jordi Vitrià
2012
Abstract
Face detection is, in general, based on content-based detectors. Nevertheless, the face is a non-rigid object with well defined relations with respect to the human body parts. In this paper, we propose to take benefit of the context information in order to improve content-based face detections. We propose a novel framework for integrating multiple content- and context-based detectors in a discriminative way. Moreover, we develop an integrated scoring procedure that measures the ’faceness’ of each hypothesis and is used to discriminate the detection results. Our approach detects a higher rate of faces while minimizing the number of false detections, giving an average increase of more than 10% in average precision when comparing it to state-of-the art face detectors.
References
- Atanasoaei, C., McCool, C., and Marcel, S. (2010). A principled approach to remove false alarms by modelling the context of a face detector. In Proc. BMVC, pages 17.1-17.11. BMVA Press.
- Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In Proceedings of IEEE Conference on CVPR'05 - Volume 2, pages 236-243, Washington, USA.
- Bourdev, L. and Malik, J. (2009). Poselets: Body part detectors trained using 3d human pose annotations. In International Conference on Computer Vision.
- Everingham, M., Van Gool, L., and et. al. The PASCAL Visual Object Classes Challenge (VOC2010) Results. http://www.pascal-network.org/challenges/ VOC/voc2010/workshop/index.html.
- Felzenszwalb, P. F., Girshick, R. B., and et. al (2010). Object detection with discriminatively trained part-based models. IEEE TPAMI, 32:1627-1645.
- Frome, A., Cheung, G., and et. al (2009). Large-scale privacy protection in google street view. In ICCV, pages 2373-2380.
- H. Takatsuka, M. T. and Okutomi, M. (2007). Distributionbased face detection using calibrated boosted cascade classifier. In Proc. ICIAP, pages 351-356.
- Jain, V. and Learned-Miller, E. (2010). Fddb: A benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst.
- Jain, V. and Learned-Miller, E. (2011). Online DomainAdaptation of a Pre-Trained Cascade of Classifiers. In CVPR.
- Kienzle, W., Bakir, G., Franz, M., and Schölkopf, B. (2004). Face detection - efficient and rank deficient. In NIPS.
- Kruppa, H. and Schiele, B. (2003). Using local context to improve face detection. In British Machine Vision Conference (BMVC'03), Norwich, UK.
- Lin, H.-T., Lin, C.-J., and Weng, R. C. (2007). A note on Platt's probabilistic outputs for support vector machines. Mach. Learn., 68:267-276.
- Maji, S. and Malik, J. (2009). Object detection using a maxmargin hough transform. In Proc. CVPR. IEEE.
- Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004). Human detection based on a probabilistic assembly of robust part detectors. In European Conference on Computer Vision. Springer-Verlag.
- Orabona, F., Keshet, J., and Caputo, B. (2009). Bounded kernel-based online learning. J. Mach. Learn. Res., 10:2643-2666.
- Rowley, H. A., Baluja, S., and Kanade, T. (1995). Human face detection in visual scenes. In Touretzky, D. S., Mozer, M., and Hasselmo, M. E., editors, NIPS, pages 875-881. MIT Press.
- Subburaman, V. B. and Marcel, S. (2010). Fast bounding box estimation based face detection. In ECCV, Workshop on Face Detection: Where we are, and what next?
- Viola, P. A. and Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR (1), pages 511-518. IEEE Computer Society.
- Xiao, R., Zhu, H., Sun, H., and Tang, X. (2007). Dynamic cascades for face detection. Computer Vision, IEEE International Conference on, 0:1-8.
- Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). Detecting faces in images: A survey. IEEE TPAMI, 24(1):34-58.
- Zhang, C. and Zhang, Z. (2010). A survey of recent advances in face detection. In Microsoft Res. Tech. Rep., MSR-TR-2010-66.
Paper Citation
in Harvard Style
Seguí S., Drozdzal M., Radeva P. and Vitrià J. (2012). AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 90-97. DOI: 10.5220/0003746200900097
in Bibtex Style
@conference{icpram12,
author={Santi Seguí and Michal Drozdzal and Petia Radeva and Jordi Vitrià},
title={AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={90-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003746200900097},
isbn={978-989-8425-99-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION
SN - 978-989-8425-99-7
AU - Seguí S.
AU - Drozdzal M.
AU - Radeva P.
AU - Vitrià J.
PY - 2012
SP - 90
EP - 97
DO - 10.5220/0003746200900097