AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION

Santi Seguí, Michal Drozdzal, Petia Radeva, Jordi Vitrià

2012

Abstract

Face detection is, in general, based on content-based detectors. Nevertheless, the face is a non-rigid object with well defined relations with respect to the human body parts. In this paper, we propose to take benefit of the context information in order to improve content-based face detections. We propose a novel framework for integrating multiple content- and context-based detectors in a discriminative way. Moreover, we develop an integrated scoring procedure that measures the ’faceness’ of each hypothesis and is used to discriminate the detection results. Our approach detects a higher rate of faces while minimizing the number of false detections, giving an average increase of more than 10% in average precision when comparing it to state-of-the art face detectors.

References

  1. Atanasoaei, C., McCool, C., and Marcel, S. (2010). A principled approach to remove false alarms by modelling the context of a face detector. In Proc. BMVC, pages 17.1-17.11. BMVA Press.
  2. Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In Proceedings of IEEE Conference on CVPR'05 - Volume 2, pages 236-243, Washington, USA.
  3. Bourdev, L. and Malik, J. (2009). Poselets: Body part detectors trained using 3d human pose annotations. In International Conference on Computer Vision.
  4. Everingham, M., Van Gool, L., and et. al. The PASCAL Visual Object Classes Challenge (VOC2010) Results. http://www.pascal-network.org/challenges/ VOC/voc2010/workshop/index.html.
  5. Felzenszwalb, P. F., Girshick, R. B., and et. al (2010). Object detection with discriminatively trained part-based models. IEEE TPAMI, 32:1627-1645.
  6. Frome, A., Cheung, G., and et. al (2009). Large-scale privacy protection in google street view. In ICCV, pages 2373-2380.
  7. H. Takatsuka, M. T. and Okutomi, M. (2007). Distributionbased face detection using calibrated boosted cascade classifier. In Proc. ICIAP, pages 351-356.
  8. Jain, V. and Learned-Miller, E. (2010). Fddb: A benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst.
  9. Jain, V. and Learned-Miller, E. (2011). Online DomainAdaptation of a Pre-Trained Cascade of Classifiers. In CVPR.
  10. Kienzle, W., Bakir, G., Franz, M., and Schölkopf, B. (2004). Face detection - efficient and rank deficient. In NIPS.
  11. Kruppa, H. and Schiele, B. (2003). Using local context to improve face detection. In British Machine Vision Conference (BMVC'03), Norwich, UK.
  12. Lin, H.-T., Lin, C.-J., and Weng, R. C. (2007). A note on Platt's probabilistic outputs for support vector machines. Mach. Learn., 68:267-276.
  13. Maji, S. and Malik, J. (2009). Object detection using a maxmargin hough transform. In Proc. CVPR. IEEE.
  14. Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004). Human detection based on a probabilistic assembly of robust part detectors. In European Conference on Computer Vision. Springer-Verlag.
  15. Orabona, F., Keshet, J., and Caputo, B. (2009). Bounded kernel-based online learning. J. Mach. Learn. Res., 10:2643-2666.
  16. Rowley, H. A., Baluja, S., and Kanade, T. (1995). Human face detection in visual scenes. In Touretzky, D. S., Mozer, M., and Hasselmo, M. E., editors, NIPS, pages 875-881. MIT Press.
  17. Subburaman, V. B. and Marcel, S. (2010). Fast bounding box estimation based face detection. In ECCV, Workshop on Face Detection: Where we are, and what next?
  18. Viola, P. A. and Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR (1), pages 511-518. IEEE Computer Society.
  19. Xiao, R., Zhu, H., Sun, H., and Tang, X. (2007). Dynamic cascades for face detection. Computer Vision, IEEE International Conference on, 0:1-8.
  20. Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). Detecting faces in images: A survey. IEEE TPAMI, 24(1):34-58.
  21. Zhang, C. and Zhang, Z. (2010). A survey of recent advances in face detection. In Microsoft Res. Tech. Rep., MSR-TR-2010-66.
Download


Paper Citation


in Harvard Style

Seguí S., Drozdzal M., Radeva P. and Vitrià J. (2012). AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 90-97. DOI: 10.5220/0003746200900097


in Bibtex Style

@conference{icpram12,
author={Santi Seguí and Michal Drozdzal and Petia Radeva and Jordi Vitrià},
title={AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={90-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003746200900097},
isbn={978-989-8425-99-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - AN INTEGRATED APPROACH TO CONTEXTUAL FACE DETECTION
SN - 978-989-8425-99-7
AU - Seguí S.
AU - Drozdzal M.
AU - Radeva P.
AU - Vitrià J.
PY - 2012
SP - 90
EP - 97
DO - 10.5220/0003746200900097