COMPUTING VALID INEQUALITIES FOR GENERAL INTEGER PROGRAMS USING AN EXTENSION OF MAXIMAL DUAL FEASIBLE FUNCTIONS TO NEGATIVE ARGUMENTS
Jürgen Rietz, Cláudio Alves, J. M. Valério de Carvalho, François Clautiaux
2012
Abstract
Dual feasible functions (DFFs) were used with much success to compute bounds for several combinatorial optimization problems and to derive valid inequalities for some linear integer programs. A major limitation of these functions is that their domain remains restricted to the set of positive arguments. To tackle more general linear integer problems, the extension of DFFs to negative arguments is essential. In this paper, we show how these functions can be generalized to this case. We explore the properties required for DFFs with negative arguments to be maximal, we analyze additional properties of these DFFs, we prove that many classical maximal DFFs cannot be extended in this way, and we present some non-trivial examples.
References
- Burdett, C. and Johnson, E. (1977). A subadditive approach to solve linear integer programs. Annals of Discrete Mathematics, 1:117-144.
- Carlier, J. and Néron, E. (2007). Computing redundant resources for the resource constrained project scheduling problem. European Journal of Operational Research, 176(3):1452-1463.
- Clautiaux, F., Alves, C., and de Carvalho, J. V. (2010). A survey of dual-feasible and superadditive functions. Annals of Operations Research, 179:317-342.
- Fekete, S. and Schepers, J. (2001). New classes of fast lower bounds for bin packing problems. Mathematical Programming, 91:11-31.
- Johnson, D. (1973). Near optimal bin packing algorithms. Dissertation, Massachussetts Institute of Technology, Cambridge, Massachussetts.
- Nemhauser, G. L. and Wolsey, L. (1998). Integer and combinatorial optimization.
- Rietz, J., Alves, C., and de Carvalho, J. V. (2011). Worstcase analysis of maximal dual feasible functions. Optimization Letters, in press, DOI:10.1007/s11590- 011-0359-2.
Paper Citation
in Harvard Style
Rietz J., Alves C., M. Valério de Carvalho J. and Clautiaux F. (2012). COMPUTING VALID INEQUALITIES FOR GENERAL INTEGER PROGRAMS USING AN EXTENSION OF MAXIMAL DUAL FEASIBLE FUNCTIONS TO NEGATIVE ARGUMENTS . In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8425-97-3, pages 39-47. DOI: 10.5220/0003751700390047
in Bibtex Style
@conference{icores12,
author={Jürgen Rietz and Cláudio Alves and J. M. Valério de Carvalho and François Clautiaux},
title={COMPUTING VALID INEQUALITIES FOR GENERAL INTEGER PROGRAMS USING AN EXTENSION OF MAXIMAL DUAL FEASIBLE FUNCTIONS TO NEGATIVE ARGUMENTS},
booktitle={Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2012},
pages={39-47},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003751700390047},
isbn={978-989-8425-97-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - COMPUTING VALID INEQUALITIES FOR GENERAL INTEGER PROGRAMS USING AN EXTENSION OF MAXIMAL DUAL FEASIBLE FUNCTIONS TO NEGATIVE ARGUMENTS
SN - 978-989-8425-97-3
AU - Rietz J.
AU - Alves C.
AU - M. Valério de Carvalho J.
AU - Clautiaux F.
PY - 2012
SP - 39
EP - 47
DO - 10.5220/0003751700390047