Intelligence Review, 11, 7-10
Ayanegui-Santiago, H., Reyes-Galaviz, O., Chávez-Ara-
gón, A., Ramírez-Cruz, F., Portilla, A., & García-Ba-
ñuelos, L. (2009). Mining Social Networks on the Me-
xican Computer Science Community. In MICAI 2009:
Advances in Artificial Intelligence (pp. 213-224).
Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert,
A., & Vicsek, T. (2002). Evolution of the social net-
work of scientific collaborations. Physica A:
Statistical Mechanics and its Applications, 311(3-4),
590-614.
Becerra-Fernandez, I. (2006). Searching for Experts on the
Web: A Review of Contemporary Expertise Locator
Systems, ACM Transactions on Internet Technology,
6(4), 333-355.
Beddoe, G. R., & Petrovic, S. (2006). Selecting and
weighting features using a genetic algorithm in a case-
based reasoning approach to personnel rostering. Eu-
ropean Journal of Operational Research, 175(2), 649-
671.
Baccigalupo, C. and Plaza, E. (2007), A Case-Based Song
Scheduler for Group Customised Radio. Proc. ICCBR
2007, Lecture Notes in Computer Science Vol. 4626,
p. 433-448. Springer Verlag.
Bozeman, B. and Corley, E. 2004. "Scientists' colla-
boration strategies: implications for scientific and
technical human capital," Research Policy, vol. 33, no.
4, pp. 599-616.
Bridge, D., Goker, M. H., McGinty, L, Smyth, B. (2005)
On Case-Based Recommender Systems. Knowledge
Engineering Review, 20 (3):315-320
Clegg, S. 2003. Problematising ourselves: Continuing pro-
fessional development in higher education. Interna-
tional Journal for Academic Development, 8, 37-50.
Dogan, S. Z., Arditi, D., Gunayd, X, & N, H. M. (2006).
Determining Attribute Weights in a CBR Model for
Early Cost Prediction of Structural Systems. Journal
of Construction Engineering and Management,
132(10), 1092-1098.
Fu, Y., & Shen, R. (2004). GA based CBR approach in
Q&A system. Expert Systems with Applications, 26(2),
167-170.
Gunawardena, S., & Weber, R. (2009). Discovering Pa-
tterns of Collaboration for Recommendation. In Pro-
ceedings 22th International FLAIRS Conference, FLA
IRS'09. AAAI Press, Menlo Park, California, 2009.
Gunawardena, S., Weber, R., & Agosto, D. E. (2010). Fin-
ding that Special Someone: Modeling Collabo-ration
in an Academic Context. Journal of Education for Li-
brary and Information Science, 51.
Higgins, S. E., & Welsh, T. S. (2009). The Tenure Process
in LIS: A Survey of LIS/IS Program Directors.
Journal of Education for Library and Information
Science, 50(3), 176-189.
Jarmulak, J., Craw, S., & Rowe, R. (2000). Genetic Al-
gorithms to Optimise CBR Retrieval. In Advances in
Case-Based Reasoning (Vol. 1898, pp. 159-194):
Springer Berlin / Heidelberg.
Jeffrey, P. (2003). Smoothing the Waters: Observations on
the Process of Cross-Disciplinary Research Colla-
boration. Social Studies of Science, 33(4), 539-562.
Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-
University Research Teams: Shifting Impact, Geo-
graphy, and Stratification in Science. Science,
322(5905), 1259-1262.
Katz, J. (1994). Geographical proximity and scientific co-
llaboration. Scientometrics, 31(1), 31-43.
Kelly, J. and Davis, L. (1991). A hybrid genetic algorithm
for classification. In Proceedings of the 12th IJCAI,
Sidney, Australia, 645–650.
Kogan, M. (2000). Higher Education Communities and
Academic Identity. Higher Education Quarterly, 54,
207-216.
Kolodner, J. (1993). Case-Based Reasoning. Morgan
Kaufmann, San Francisco
Liben-Nowell, D., & Kleinberg, J. (2003). The link
prediction problem for social networks. Paper pre-
sented at the Proceedings of the twelfth international
conference on Information and knowledge
management.
McDonald, D. W., & Ackerman, M. S. (2000). Expertise
recommender: a flexible recommendation system and
architecture. Paper presented at the Proceedings of the
2000 ACM conference on Computer supported coo-
perative work.
Maybury, M. T. 2002. Knowledge on demand: Knowledge
and expert discovery, Journal of Universal Computer
Science (8)5, pp. 491-505.
McDonald, D. (2003). Recommending collaboration with
social networks: a comparative evaluation. Paper pre-
sented at the CHI '03: Proceedings of the SIGCHI
conference on Human factors in computing systems,
Ft. Lauderdale, Florida, USA.
National Academy of Sciences, National Academy of En-
gineering, Institute of Medicine. (2005). Facilitating
Interdisciplinary Research. Washington, DC.:
National Academies Press.
National Science Foundation, Strategic Plan FY 2006-
2011. Investing in America’s Future (NSF 06-48),
September 2006.
National Academy of Sciences, National Academy of En-
gineering, Institute of Medicine. (2005). Facilitating
Interdisciplinary Research. Washington, DC.:
National Academies Press.
Newman, M. E. J. (2001). From the Cover: The structure
of scientific collaboration networks (Publication no.
10.1073/pnas.021544898).
Serdyukov, P., Feng, L., van Bunningen, A., Evers, S., van
Heerde, H., Apers, P., Fokkinga, M., and Hiemstra, D.
(2008). The Right Expert at the Right Time and Place.
PAKM: 38-49.
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z.
(2008). ArnetMiner: Extraction and Mining of Aca-
demic Social Networks. Paper presented at the
Fourteenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining
(SIGKDD'2009), Las Vegas, Nevada, USA.
Wood, D., & Gray, B. (1991). Towards a Comprehensive
Theory of Collaboration. Journal of Applied
Behavioral Science, 27(2), 139-162.
BLUEPRINTS FOR SUCCESS - Guidelines for Building Multidisciplinary Collaboration Teams
393