5 CONCLUSIONS
We proposed a quasi-Newton optimization frame-
work for the non-convex task induced by semi-
supervised support vector machines. It seems that
this type of optimization schemes is well suited for
the task at hand since it (a) can be implemented eas-
ily due to its conceptual simplicity and (b) admits di-
rect accelerations for sparse and non-sparse data. The
experiments indicate that the resulting approach can
successfully incorporate unlabeled data, even in real-
istic scenarios where the lack of labeled data compli-
cates the model selection phase.
ACKNOWLEDGEMENTS
This work has been supported in part by funds of
the Deutsche Forschungsgemeinschaft (DFG) (Fabian
Gieseke, grant KR 3695) and by the Academy of
Finland (Tapio Pahikkala, grant 134020). The au-
thors would like to thank the anonymous reviewers
for valuable comments and suggestions.
REFERENCES
Adankon, M., Cheriet, M., and Biem, A. (2009). Semisu-
pervised least squares support vector machine. IEEE
Transactions on Neural Networks, 20(12):1858–1870.
Bennett, K. P. and Demiriz, A. (1999). Semi-supervised
support vector machines. In Adv. in Neural Informa-
tion Proc. Systems 11, pages 368–374. MIT Press.
Bie, T. D. and Cristianini, N. (2004). Convex methods for
transduction. In Adv. in Neural Information Proc. Sys-
tems 16, pages 73–80. MIT Press.
Byrd, R. H., Byrd, R. H., Lu, P., Lu, P., Nocedal, J.,
Nocedal, J., Zhu, C., and Zhu, C. (1995). A lim-
ited memory algorithm for bound constrained opti-
mization. SIAM Journal on Scientific Computing,
16(5):1190–1208.
Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Chapelle, O., Chi, M., and Zien, A. (2006a). A continuation
method for semi-supervised SVMs. In Proc. Int. Conf.
on Mach. Learn., pages 185–192.
Chapelle, O., Sch
¨
olkopf, B., and Zien, A., editors (2006b).
Semi-Supervised Learning. MIT Press, Cambridge,
MA.
Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008).
Optimization techniques for semi-supervised support
vector machines. Journal of Mach. Learn. Res.,
9:203–233.
Chapelle, O. and Zien, A. (2005). Semi-supervised classi-
fication by low density separation. In Proc. Tenth Int.
Workshop on Art. Intell. and Statistics, pages 57–64.
Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006).
Trading convexity for scalability. In Proc. Int. Conf.
on Mach. Learn., pages 201–208.
Fung, G. and Mangasarian, O. L. (2001). Semi-supervised
support vector machines for unlabeled data classifica-
tion. Optimization Methods and Software, 15:29–44.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The
Elements of Statistical Learning. Springer.
Joachims, T. (1999). Transductive inference for text classi-
fication using support vector machines. In Proc. Int.
Conf. on Mach. Learn., pages 200–209.
Mierswa, I. (2009). Non-convex and multi-objective opti-
mization in data mining. PhD thesis, Technische Uni-
versit
¨
at Dortmund.
Nene, S., Nayar, S., and Murase, H. (1996). Columbia ob-
ject image library (coil-100). Technical report.
Nocedal, J. and Wright, S. J. (2000). Numerical Optimiza-
tion. Springer, 1 edition.
Reddy, I. S., Shevade, S., and Murty, M. (2010). A fast
quasi-Newton method for semi-supervised SVM. Pat-
tern Recognition, In Press, Corrected Proof.
Rifkin, R. M. (2002). Everything Old is New Again: A Fresh
Look at Historical Approaches in Machine Learning.
PhD thesis, MIT.
Sch
¨
olkopf, B., Herbrich, R., and Smola, A. J. (2001). A
generalized representer theorem. In Helmbold, D. P.
and Williamson, B., editors, Proc. 14th Annual Conf.
on Computational Learning Theory, pages 416–426.
Sindhwani, V., Keerthi, S., and Chapelle, O. (2006). De-
terministic annealing for semi-supervised kernel ma-
chines. In Proc. Int. Conf. on Mach. Learn., pages
841–848.
Sindhwani, V. and Keerthi, S. S. (2006). Large scale semi-
supervised linear SVMs. In Proc. 29th annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 477–484, New
York, NY, USA. ACM.
Steinwart, I. and Christmann, A. (2008). Support Vector
Machines. Springer, New York, NY, USA.
Vapnik, V. and Sterin, A. (1977). On structural risk mini-
mization or overall risk in a problem of pattern recog-
nition. Aut. and Remote Control, 10(3):1495–1503.
Xu, L. and Schuurmans, D. (2005). Unsupervised and semi-
supervised multi-class support vector machines. In
Proc. National Conf. on Art. Intell., pages 904–910.
Zhang, K., Kwok, J. T., and Parvin, B. (2009). Prototype
vector machine for large scale semi-supervised learn-
ing. In Proc. of the Int. Conf. on Mach. Learn., pages
1233–1240.
Zhang, T. and Oles, F. J. (2001). Text categorization based
on regularized linear classification methods. Informa-
tion Retrieval, 4:5–31.
Zhao, B., Wang, F., and Zhang, C. (2008). Cuts3vm: A
fast semi-supervised svm algorithm. In Proc. 14th
ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 830–838.
Zhu, X. and Goldberg, A. B. (2009). Introduction to Semi-
Supervised Learning. Morgan and Claypool.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
54