efficiently tessellate many massive datasets in Ma-
chine Learning. The use of a pre-test based on the
Gabriel adjacency, which provides a faster but incom-
plete graph of neighboring relations, does not signi-
ficatively increase performance because, while it is
fast, it provides only one link value while the poly-
tope provides several link values in each test.
REFERENCES
Agrell, E. (1993). A method for examining vector quan-
tizer structures. In Proceeding of IEEE International
Symposium on Information Theory, page 394.
Asuncion, A. and Newman, D. (2007). UCI machine learn-
ing repository.
Aupetit, M. (2003). High-dimensional labeled data analy-
sis with gabriel graphs. In European Symposium on
Artificial Neuron Networks, pages 21–26.
Aupetit, M. and Catz, T. (2005). High-dimensional labeled
data analysis with topology representating graphs.
Neurocomputing, 63:139–169.
Avis, D. and Fukuda, K. (1992). A pivoting algorithm for
convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom., 8(3):295–
313.
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996).
The quickhull algorithm for convex hulls. ACM Trans-
actions on Mathematical Software, 22(4):469–483.
Bazaraa, M. S., Jarvis, J. J., and Sherali, H. S. (1990). Lin-
near Programming and Networks Flows. Wiley.
Bhattacharya, B., Poulsen, R., and Toussaint, G. (1992).
Application of proximity graphs to editing nearest
neighbor decision rules. Technical Report SOCS
92.19, School of Computer Science, McGill Univer-
sity.
Bowyer, A. (1981). Computing Dirichlet tessellations. The
Computer Journal, 24(2):162–166.
Bremner, D., Fukuda, K., and Marzetta, A. (1997). Primal-
dual methods for vertex and facet enumeration. In
SCG ’97: Proceedings of the thirteenth annual sympo-
sium on Computational geometry, pages 49–56, New
York, NY, USA. ACM.
Chin, E., Garcia, E. K., and Gupta, M. R. (2007). Color
management of printers by regression over enclosing
neighborhoods. In IEEE International Conference on
Image Processing. ICIP 2007, volume 2, pages 161–
164.
Dantzig, G. B. and Thapa, M. N. (2003). Linear Program-
ming 2: Theory and Extensions. Springer Verlag.
Devroye, L., Gyorfi, L., and Lugosi, G. (1996). A Proba-
bilistic Theory of Pattern Recognition.
Duda, R., Hart, P., and Stork, D. (2001). Pattern Classifica-
tion. John Wiley.
Fukuda, K. (2004). Frecuently asked questions in polyhe-
dral computation. Technical report, Swiss Federal In-
stitute of Technology, Lausanne, Switzerland.
Fukuda, K., Liebling, T. M., and Margot, F. (1997). Analy-
sis of backtrak algoritms for listing all vertices and all
faces of convex polyhedron. Computational Geome-
try, 8:1–12.
Gabriel, K. R. and Sokal, R. R. (1969). A new stattistical
approach to geographic variation analysis. Systematic
Zoology, 18:259–270.
Greeff, G. (2005). The revised simplex algorithm on a GPU.
Technical report, Dept. of Computer Science, Univer-
sity of Stellenbosch.
Gupta, M. R., Garcia, E. K., and Chin, E. (2008). Adaptive
local linear regression with application to printer color
management. IEEE Trans. on Image Processing.
Kalai, G. (1997). Linear programming, the simplex algo-
rithm and simple polytopes. Math. Program., 79:217–
233.
Koivistoinen, H., Ruuska, M., and Elomaa, T. (2006). A
voronoi diagram approach to autonomous clustering.
Lecture Notes in Computer Science, (4265):149–160.
Navarro, G. (2002). Searching in metric spaces by spatial
approximation. The VLDB Journal, 11:28–46.
Ramasubramanian, V. and Paliwal, K. (1997). Voronoi
projection-based fast nearest-neighbor search algo-
rithms: Box-search and mapping table-based search
techniques. Digital Signal Processing, 7:260–277.
Sibson, R. (1981). Interpreting multivariate data, chapter
A brief description of natural neighbour interpolation,
pages 21–36. John Wiley.
Watson, D. F. (1981). Computing the n-dimensional tes-
sellation with application to voronoi polytopes. The
Computer Journal, 24(2):167–172.
Web, A. (2002). Statistical Pattern Recognition. John Wi-
ley, 2nd edition.
Winston, W. L. (1994). Operations Research Applications
and Algorithms. Wadsworth.
Wright, M. H. (2004). The interior-point revolution in op-
timization: History, recent developments,nnd lasting
consequences. Bull. of AMS, 42(1):39–56.
Yarmish, G. and van Slyke, R. (2001). retroLP, an imple-
mentation of the standard Simplex method. Technical
report, Dept. of Computer and Information Science,
Brooklyn College.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
364