The presented model of bacterial genome evolution,
which was shown in the example of B. burgdorferi,
should give similar general results for other bacte-
rial genomes because their DNA asymmetry resem-
bles that from the species analyzed here.
REFERENCES
Bła
˙
zej, P., Mackiewicz, P., and Cebrat, S. (2010). Using the
genetic code wisdom for recognizing protein coding
sequences. In Proceedings of the 2010 International
Conference on Bioinformatics & Computational Biol-
ogy (BIOCOMP 2010), pages 302–305.
Bła
˙
zej, P., Mackiewicz, P., and Cebrat, S. (2011). Algo-
rithm for finding coding signal using homogeneous
markov chains independently for three codon posi-
tions. In Proceedings of the 2011 International Con-
ference on Bioinformatics and Computational Biology
(ICBCB 2011), pages 20–24.
Cebrat, S., Dudek, M., and Mackiewicz, P. (1998). Se-
quence asymmetry as a parameter indicating coding
sequence in saccharomyces cerevisiae genome. The-
ory in Biosciences, 117:78–89.
Cebrat, S., Dudek, M., Mackiewicz, P., Kowalczuk, M.,
and Fita, M. (1997). Asymmetry of coding ver-
sus non-coding strand in coding sequences of differ-
ent genomes. Microbial and Comparative Genomics,
2:259–268.
Dudkiewicz, M., Mackiewicz, P., Kowalczuk, M., Mack-
iewicz, D., Nowicka, A., Polak, N., Smolarczyk, K.,
Kriaga, J., Dudek, M., and Cebrat, S. (2004). Simu-
lation of gene evolution under directional mutational
pressure. Physica A, (336):63–73.
Dudkiewicz, M., Mackiewicz, P., Mackiewicz, D., Kowal-
czuk, M., Nowicka, A., Polak, N., Smolarczyk, K.,
Kiraga, J., Dudek, M., and Cebrat, S. (2005). Higher
mutation rate helps to rescue genes from the elimina-
tion by selection. Biosystems, 80:192–199.
Frank, A. and Lobry, J. (1999). Asymmetric substitution
patterns: a review of possible underlying mutational
or selective mechanisms. Gene, 238:65–77.
Freeman, J., Plasterer, T., Smith, T., and Mohr, S. (1998).
Patterns of genome organization in bacteria. Science,
279:1827.
Grigoriev, A. (1998). Analysing genomes with cumulative
skew diagrams. Nucleic Acids Res., 26:2286–2290.
Khrustalev, V. and Barkovsky, E. (2010). The probability
of nonsense mutation caused by replication-associated
mutational pressure is much higher for bacterial genes
from lagging than from leading strands. Genomics,
96:173–180.
Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Now-
icka, A., Dudkiewicz, M., Dudek, M., and Cebrat, S.
(2001a). DNA asymmetry and the replicational muta-
tional pressure. J. Appl. Genet., 42:553–577.
Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Now-
icka, A., Dudkiewicz, M., Dudek, M., and Cebrat,
S. (2001b). High correlation between the turnover of
nucleotides under mutational pressure and the DNA
composition. BMC Evol. Biol., 1:13.
Lafay, B., Lloyd, A., McLean, M., Devine, K., Sharp,
P., and Wolfe, K. (1999). Proteome composition
and codon usage in spirochaetes: species-specific and
DNA strand-specific mutational biases. Acids Res.,
27:1642–1649.
Lobry, J. (1996). Asymmetric substitution patterns in the
two DNA strands of bacteria. Mol. Biol. Evol., 13:,
660–665.
Lobry, J. and Sueoka, N. (2002). Asymmetric directional
mutation pressures in bacteria. Genome Biol., 3:58.
Mackiewicz, D. and Cebrat, S. (2009). To understand nature
- computer modelling between genetics and evolution.
In J. Miekisz and M. Lachowicz (eds), From Genetics
to Mathematics (Series on Advances in Mathematics
for Applied Sciences) Vol. 79, pages 1–33. World Sci-
entific.
Mackiewicz, D., Mackiewicz, P., Kowalczuk, M., Dud-
kiewicz, M., Dudek, M., and Cebrat, S. (2003a).
Rearrangements between differently replicating dna
strands in asymmetric bacterial genomes. Acta Mi-
crobiologica Polonica, 52:245–261.
Mackiewicz, P., Dudkiewicz, M., Kowalczuk, M., Mack-
iewicz, D., Kiraga, J., Polak, N., Smolarczyk, K.,
Nowicka, A., Dudek, M., and Cebrat, S. (2004). Dif-
ferential gene survival under asymmetric directional
mutational pressure. Lecture Notes in Computer Sci-
ence, 3039:687–693.
Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M.,
and Cebrat, S. (1999a). Asymmetry of nucleotide
composition of prokaryotic chromosomes. J. Appl.
Genet., 40:1–14.
Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M.,
and Cebrat, S. (1999b). How does replication-
associated mutational pressure influence amino acid
composition of proteins? Genome Res., 9:409–416.
Mackiewicz, P., Gierlik, A., Kowalczuk, M., Szczepanik,
D., Dudek, M., and Cebrat, S. (1999c). Mechanisms
generating long-range correlation in nucleotide com-
position of the borrelia burgdorferi genome. Physica
A, 273:103–115.
Mackiewicz, P., Mackiewicz, D., Kowalczuk, M., Dud-
kiewicz, M., Dudek, M., and Cebrat, S. (2003b). High
divergence rate of sequences located on different DNA
strands in closely related bacterial genomes. J. Appl.
Genet., 44:561–584.
Mackiewicz, P., Szczepanik, D., Gierlik, A., Kowalczuk,
M., Nowicka, A., Dudkiewicz, M., Dudek, M., and
Cebrat, S. (2001). The differential killing of genes
by inversions in prokaryotic genomes. J. Mol. Evol.,
53:615–621.
McInerney, J. (1998). Replicational and transcriptional se-
lection on codon usage in borrelia burgdorferi. Proc.
Natl. Acad. Sci. U.S.A., 95:10698–10703.
McLean, M., Wolfe, K., and Devine, K. (1998). Base com-
position skews, replication orientation, and gene ori-
entation in 12 prokaryote genomes. J. Mol. Evol.,
47:691–696.
Mrazek, J. and Karlin, S. (1998). Strand compositional
BIOINFORMATICS 2012 - International Conference on Bioinformatics Models, Methods and Algorithms
56