same strategy on initial population generation in
other types of representation for the RCPSP, namely
the permutation code.
Further work would also consist on applying this
method to other problems. The Resource
Constrained Multi-Project Scheduling Problem
(RCMPSP), as a generalization of the RCPSP,
would be the next candidate for evaluating the
advantages of the approach presented above.
REFERENCES
Bean, J. C., 1994. Genetics and random keys for
sequencing and optimization. ORSA Journal on
Computing, 6, 154–160.
Brucker, P., Knust, S., Schoo, A., Thiele, O., 1998. A
branch and bound algorithm for the resource-
constrained project scheduling problem. European
Journal of Operational Research, 107, 272-288.
Cheng, R., Gen, M., Tsujimura, Y., 1996. A tutorial
survey of job-shop scheduling problems using genetic
algorithms part I: Representation. Computers &
Industrial Engineering, 34 (4), 983–997.
Demeulemeester, E., Vanhocke, M., Herroelen, W., 2003.
RanGen: A Random Network Generator for Activity-
on-the-node Networks. Journal of Scheduling, 6, 17-
38.
Giffler, B., Thompson, G. L., 1960. Algorithms for
solving production scheduling problems. Operations
Research, 8, 487-503.
Gonçalves, J. F., Mendes, J. J., Resende, M. G. C., 2005.
A hybrid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Research,
167, 77–95.
Hartmann, S., Kolisch, R., 2000. Experimental evaluation
of state-of-the-art heuristics for the resource-
constrained project scheduling problem. European
Journal of Operational Research, 127, 2, 394-407.
Kolisch, R., 1996. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational
Research, 90, 320–333.
Kolisch, R., Hartmann S., 1999. Heuristic algorithms for
solving the resource-constrained project scheduling
problem - Classification and computational analysis,
in Weglarz, J. (Eds.): Project Scheduling – Recent
Models, Algorithms and Applications, Kluwer,
Boston, p. 147 - 178.
Kolisch, R., Hartmann, S., 2006. Experimental
investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of
Operational Research, 174, 1, 23-37.
Kolisch, R., Sprecher, A., 1997. PSPLIB - A project
scheduling library. European Journal of Operational
Research, 96, 205-216.
Lian, Z., Gu, X., Jiao, B., 2006. A similar particle swarm
optimization algorithm for job-shop scheduling to
minimize makespan. Applied Mathematics and
Computation, 183, 1008–1017.
Liu, M., Hao, J., Wu, C., 2008. A prediction based
iterative decomposition algorithm for scheduling
large-scale job shops, Mathematical and Computer
Modelling, 47, 411–421.
Oliveira, J. A., Dias, L., Pereira, G., 2010. Solving the Job
Shop Problem with a random keys genetic algorithm
with instance parameters. Proceedings of 2nd
International Conference on Engineering
Optimization – EngOpt 2010, Lisbon – Portugal.
Ranjbar, M., Kianfar, F., 2009. A Hybrid Scatter Search
for the RCPSP. Transaction E: Industrial
Engineering, 16, 11-18.
Silva, H., Oliveira, J. A., Tereso, A., 2010. Um Algoritmo
Genético para Programação de Projectos em Redes de
Actividades com Complementaridade de Recursos.
Revista Ibérica de Sistemas y Tecnologías de la
Información,. 6, 59-72.
Sprecher, A., Kolisch, R., Drexl A., 1995. Semi-active,
active, and non-delay schedules for the resource-
constrained project scheduling problem, European
Journal of Operational Research, 80, 94-102.
Vaessens, R., Aarts, E., Lenstra, J. K., 1996. Job Shop
Scheduling by local search. INFORMS Journal on
Computing, 8, 302-317.
Zhang, C., Li, P., Guan, Z., Rao, Y., 2007. A tabu search
algorithm with a new neighborhood structure for the
job shop scheduling problem. Computers &
Operations Research, 53, 313-320.
ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems
164