NONLINEAR MAPPING BY CONSTRAINED CO-CLUSTERING
Rodolphe Priam, Mohamed Nadif, Gérard Govaert
2012
Abstract
The latent block model is an efficient alternative to the mixture model for modelling a dataset when the number of rows or columns of the data matrix studied is large. For analyzing and reducing the spaces of a matrix, the methods proposed in the litterature are most of the time with their foundation in a non-parametric or a mixture model approach. We present an embedding of the projection of co-occurrence tables in the Poisson latent block mixture model. Our approach leads to an efficient way to cluster and reduce this kind of data matrices.
References
- Benzecri, J. P. (1980). L'analyse des données tome 1 et 2 : l'analyse des correspondances. Dunod.
- Bishop, C. M., Svensén, M., and Williams, C. K. I. (1998). Developpements of generative topographic mapping. Neurocomputing, 21:203-224.
- Böhning, D. and Lindsay, B. (1988). Monotonicity of quadratic-approximation algorithms. Annals of the Institute of Statistical Mathematics, 40(4):641-663.
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T., and Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6):391-407.
- Dhillon, I. S., Mallela, S., and Modha, D. S. (2003). Information-theoretic co-clustering. In Proceedings of The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD-2003), pages 89-98.
- El-yaniv, R. and Souroujon, O. (2001). Iterative double clustering for unsupervised and semi-supervised learning. In In Advances in Neural Information Processing Systems (NIPS, pages 121-132.
- Girolami, M. (2001). The topographic organization and visualization of binary data using multivariate-bernoulli latent variable models. IEEE Transactions on Neural Networks, 20(6):1367-1374.
- Govaert, G. and Nadif, M. (2003). Clustering with block mixture models. Pattern Recognition, 36(2):463-473.
- Govaert, G. and Nadif, M. (2005). An em algorithm for the block mixture model. IEEE Trans. Pattern Anal. Mach. Intell., 27(4):643-647.
- Govaert, G. and Nadif, M. (2010). Latent block model for contingency table. Communications in Statisticstheory and Methods, 39:416-425.
- Hofmann, T. (1999). Probabilistic latent semantic analysis. SIGIR'99, pages 50-57.
- Hofmann, T. (2000). Probmap - a probabilistic approach for mapping large document collections. Intell. Data Anal., 4(2):149-164.
- Kabán, A. (2005). A scalable generative topographic mapping for sparse data sequences. In ITCC 7805: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume I, pages 51-56, Washington, DC, USA. IEEE Computer Society.
- Kabán, A. and Girolami, M. (2001). A combined latent class and trait model for analysis and visualisation of discrete data. IEEE Trans. Pattern Anal. and Mach. Intell., pages 859-872.
- Kohonen, T. (1997). Self-organizing maps. Springer.
- McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. John Wiley and Sons, New York.
- Slonim, N., Tishby, N., and Y, Y. I. (2000). Document clustering using word clusters via the information bottleneck method. In In ACM SIGIR 2000, pages 208-215. ACM press.
Paper Citation
in Harvard Style
Priam R., Nadif M. and Govaert G. (2012). NONLINEAR MAPPING BY CONSTRAINED CO-CLUSTERING . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8425-98-0, pages 63-68. DOI: 10.5220/0003764800630068
in Bibtex Style
@conference{icpram12,
author={Rodolphe Priam and Mohamed Nadif and Gérard Govaert},
title={NONLINEAR MAPPING BY CONSTRAINED CO-CLUSTERING},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2012},
pages={63-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003764800630068},
isbn={978-989-8425-98-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - NONLINEAR MAPPING BY CONSTRAINED CO-CLUSTERING
SN - 978-989-8425-98-0
AU - Priam R.
AU - Nadif M.
AU - Govaert G.
PY - 2012
SP - 63
EP - 68
DO - 10.5220/0003764800630068