outline shape. Medical Image Analysis, 1(3):225–243.
Bosch, J., Mitchell, S., Lelieveldt, B., Nijland, F., Kamp,
O., Sonka, M., and Reiber, J. (2002). Automatic seg-
mentation of echocardiographic sequences by active
appearance motion models. IEEE Transactions on
Medical Imaging, 21(11):1374–1383.
Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J.
(1995). Active shape models—their training and ap-
plication. Computer Vision and Image Understanding,
61:38–59.
Dollar, P., Rabaud, V., Cottrell, G., and Belongie, S. (2005).
Behavior recognition via sparse spatio-temporal fea-
tures. In Proceedings of the 2
nd
Joint IEEE Interna-
tional Workshop on Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance, pages
65–72. IEEE Computer Society.
Gavrila, D. (1999). The visual analysis of human movement:
A survey. Computer Vision and Image Understanding,
73(1):82–98.
Gorelick, L., Blank, M., Shechtman, E., Irani, M., and Basri,
R. (2007). Actions as space-time shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
29(12):2247–2253.
Haase, D. and Denzler, J. (2011). Anatomical landmark
tracking for the analysis of animal locomotion in x-ray
videos using active appearance models. In Heyden, A.
and Kahl, F., editors, Image Analysis, volume 6688 of
Lecture Notes in Computer Science, pages 604–615.
Springer Berlin / Heidelberg.
Han, L., Wu, X., Liang, W., Hou, G., and Jia, Y. (2010).
Discriminative human action recognition in the learned
hierarchical manifold space. Image and Vision Com-
puting, 28(5):836–849.
Jia, K. and Yeung, D.-Y. (2008). Human action recognition
using local spatio-temporal discriminant embedding.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8.
Junejo, I., Dexter, E., Laptev, I., and Perez, P. (2011). View-
independent action recognition from temporal self-
similarities. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1):172–185.
Ke, Y., Sukthankar, R., and Hebert, M. (2007). Spatio-
temporal shape and flow correlation for action recogni-
tion. In Proceeding of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Visual Surveil-
lance Workshop, pages 1–8.
Laptev, I. (2005). On space-time interest points. Interna-
tional Journal of Computer Vision, 64(2-3):107–123.
Lelieveldt, B. P. F.,
¨
Uz
¨
umc
¨
u, M., van der Geest, R. J., Reiber,
J. H. C., and Sonka, M. (2003). Multi-view active
appearance models for consistent segmentation of mul-
tiple standard views: application to long and short-axis
cardiac mr images. In Proceedings of the 17
th
Interna-
tional Congress and Exhibition on Computer Assisted
Radiology and Surgery, pages 1141–1146.
Li, W., Zhang, Z., and Liu, Z. (2010). Action recognition
based on a bag of 3d points. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pages 9–14.
Oost, E., Koning, G., Sonka, M., Oemrawsingh, P., Reiber, J.,
and Lelieveldt, B. (2006). Automated contour detection
in x-ray left ventricular angiograms using multiview
active appearance models and dynamic programming.
IEEE Transactions on Medical Imaging, 25(9):1158–
1171.
Poppe, R. (2010). A survey on vision-based human action
recognition. Image and Vision Computing, 28(6):976–
990.
Schwarz, L. A., Mateus, D., Castaneda, V., and Navab, N.
(2010). Manifold learning for tof-based human body
tracking and activity recognition. In Proceedings of the
British Machine Vision Conference, pages 80.1–80.11.
BMVA Press.
Schwarz, L. A., Mateus, D., and Navab, N. (2012). Recog-
nizing multiple human activities and tracking full-body
pose in unconstrained environments. Pattern Recogni-
tion, 45(1):11–23.
Shen, Y., Ashraf, N., and Foroosh, H. (2008). Action recogni-
tion based on homography constraints. In Proceedings
of the 19
th
International Conference on Pattern Recog-
nition, pages 1–4.
Shotton, J., Fitzgibbon, A. W., Cook, M., Sharp, T., Finoc-
chio, M., Moore, R., Kipman, A., and Blake, A. (2011).
Real-time human pose recognition in parts from single
depth images. In Proceddings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1297–1304.
Sun, M.-F., Wang, S.-J., Liu, X.-H., Jia, C.-C., and Zhou,
C.-G. (2011). Human action recognition using tensor
principal component analysis. In Proceedings of the 4
th
IEEE International Conference on Computer Science
and Information Technology, pages 487–491.
Turaga, P., Chellappa, R., Subrahmanian, V., and Udrea, O.
(2008). Machine recognition of human activities: A
survey. IEEE Transactions on Circuits and Systems for
Video Technology, 18(11):1473–1488.
Wang, L. and Suter, D. (2007). Learning and matching of
dynamic shape manifolds for human action recognition.
IEEE Transactions on Image Processing, 16(6):1646–
1661.
Yamazaki, M., Chen, Y.-W., and Xu, G. (2007). Human
action recognition using independent component anal-
ysis. In Intelligence Techniques in Computer Games
and Simulations.
Zhang, J., Li, S. Z., and Wang, J. (2005). Manifold learn-
ing and applications in recognition. In Tan, Y.-P.,
Yap, K., and Wang, L., editors, Intelligent Multime-
dia Processing with Soft Computing, volume 168 of
Studies in Fuzziness and Soft Computing, pages 281–
300. Springer-Verlag.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
294