dictions by existing methods, and suggest new possi-
ble interactions to be further investigated.
In the future, we plan to apply the FIST method
to data integrating additional information about pro-
teins, like structural and sequential similarities, with
protein-protein interactions to improve the results. In-
deed, the integration of different kinds of biologi-
cal information is an essential consideration to fully
understand the underlying biological processes (Bell
et al., 2011).
REFERENCES
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and
Verkamo, A. I. (1996). Fast discovery of association
rules. In Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI/MIT Press.
Arkin, M. R. and Wells, J. A. (2004). Small-molecule in-
hibitors of protein-protein interactions: Progressing
towards the dream. Nat. Rev. Drug Discov., 3:301–
317.
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., and
Lakhal, L. (2000). Mining minimal non-redundant as-
sociation rules using frequent closed itemsets. InProc.
CL, pages 972–986.
Bell, L., Chowdhary, R., Liu, J. S., Niu, X., and Zhang, J.
(2011). Integrated bio-entity network: A system for
biological knowledge discovery. PLoS ONE, 6.
Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for
predicting protein-protein interactions. Bioinformat-
ics, 21(1):38–46.
Ceglar, A. and Roddick, J. (2006). Association mining.
ACM Comput. Surv., 2(38).
Chirmule, N., Oyaizu, N., Saxinger, C., and Pahwa, S.
(1994). Nef protein of hiv-1 has b-cell stimulatory
activity. AIDS, 6(8):733–4.
Fu, W., Sanders-Beer, B. E., Katz, K. S., Maglott, D. R.,
Pruitt, K. D., and Ptak, R. G. (2009). Human im-
munodeficiency virus type 1, human protein interac-
tion database at ncbi. Nucl. Acids Res., 37:417–422.
Gahery, H., Figueiredo, S., Texier, C., and et al. (2007).
Hla-dr-restricted peptides identified in the nef pro-
tein can induce hiv type 1-specific il-2/ifn-gamma-
secreting cd4+ and cd4+ /cd8+ t cells in humans after
lipopeptide vaccination. AIDS Res. and Hum. Retro-
viruses, 3(23):427–37.
Ganter, B. and Wille, R. (1999). Formal Concept Analysis:
Mathematical foundations. Springer.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA data mining
software: An update. SIGKDD Expl., 1(11).
Hamrouni, T., Yahia, S. B., and Nguifo, E. M. (2006). Suc-
cinct system of minimal generators: A thorough study,
limitations and new definitions. In Proc. CLA, pages
80–95.
Jansen, R., H. Yu, D. G., Kluger, Y., Krogan, N. J., Chung,
S., Emili, A., Snyder, M., Greenblatt, J. F., and Ger-
stein, M. (2003). A bayesian networks approach for
predicting protein-protein interactions from genomic
data. Science, 302:449–453.
Konig, R., Zhou, Y., Elleder, D., and et al. (2008). Global
analysis of host-pathogen interactions that regulate
early-stage hiv-1 replication. Cell, 135:49–60.
Lin, N., Wu, B., Jansen, R., Gerstein, M., and Zhao, H.
(2004). Information assessment on predicting protein-
protein interactions. BMC Bioinformatics, 5(154).
Madeira, S. C. and Oliveira, A. L. (2004). Bicluster-
ing algorithms for biological data analysis: A survey.
IEEE/ACM Trans. Comput. Biol. Bioinform., 1:24–45.
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., and
Eils, R. (2010). Mining association rules from hiv-
human protein interaction. In Proc. ICSMB, pages
344–348.
Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999).
Efficient mining of association rules using closed
itemset lattices. Inform. Systems, 1(24):25–46.
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., and
Lakhal, L. (2005). Generating a condensed repre-
sentation for association rules. J. Intell. Inf. Syst.,
1(24):29–60.
Ptak, R. G., Fu, W., Sanders-Beer, B. E., Dickerson, J. E.,
Pinney, J. W., Robertson, D. L., Rozanov, M. N., Katz,
K. S., Maglott, D. R., Pruitt, K. D., and Dieffenbach,
C. W. (2008). Cataloguing the hiv-1 human protein
interaction network. AIDS Res. and Hum. Retrov.,
4(12):1497–1502.
Qi, Y., Klein-Seetharaman, J., and Bar-Joseph, Z. (2007).
A mixture of feature experts approach for protein-
protein interaction prediction. BMC Bioinform., 8.
Scala, G. (1994). The expression of the interleukin 6 gene
is induced by the human immunodeficiency virus 1 tat
protein. J. Exp. Medicine, 3(179):961–971.
Tastan, O., Qi, Y., Carbonell, J., and Klein-Seetharaman, J.
(2009). Prediction of interactions between hiv-1 and
human proteins by information integration. In Proc.
PSB, pages 516–527.
Westendorp, M. O., Li-Weber, M., Frank, R. W., and Kram-
mer, P. H. (1994). Human immunodeficiency virus
type 1 tat upregulates interleukin-2 secretion in acti-
vated t cells. J. of Virology, 7(68):4177–4185.
Yamanishi, Y., Vert, J. P., and Kanehisa, M. (2004). Pro-
tein network inference from multiple genomic data: A
supervised approach. Bioinformatics, 20:363–370.
Yang, Y., Webb, G., and Wu, X. (2010). Discretization
methods. In Data Mining and Knowledge Discovery
Handbook, Part 1, pages 101–116.
Zaki, M. J. (2000). Generating non-redundant association
rules. In Proc. KDD, pages 34–43.
Zaki, M. J. (2004). Mining non-redundant association rules.
Data Min. Knowl. Disc., 9(23):223–248.
Zhang, L., Wong, S., King, O., and Roth, F. (2004). Pre-
dicting co-complexed protein pairs using genomic and
proteomic data integration. BMC Bioinform., 5(38).
PREDICTION OF PROTEIN INTERACTIONS ON HIV-1-HUMAN PPI DATA USING A NOVEL CLOSURE-BASED
INTEGRATED APPROACH
173