Table 1: Experimental results for ECG Segmentation.
Type of Electrodes Type of Processing Algorithm #segments %valid - mean %valid - std
Ag/AgCl
Offline
EG-Butter 7614 96.5 6.6
EG-FIR 7322 97.9 4.3
EG-Butter-3 7625 96.4 6.7
EG-FIR-3 7719 97.8 4.6
Online
Chr 6482 94.5 12.5
Chr+EG 5971 92.4 10.4
Electrolycra
Offline
EG-Butter 6692 94.0 11.4
EG-FIR 6244 93.4 11.6
EG-Butter-3 6712 93.9 11.4
EG-FIR-3 6545 94.2 10.5
Online
Chr 5550 90.8 15.7
Chr+EG 5044 84.5 18.5
65248/2009 and SFRH/PROTEC/49512/2009, and by
the Departamento de Engenharia de Electr´onica e
Telecomunicac¸˜oes e de Computadores - ISEL, whose
support the authors gratefully acknowledge.
REFERENCES
Biel, L., Pettersson, O., Philipson, L., and Wide, P. (1999).
Ecg analysis: a new approach in human identification.
In Proceedings of the 16th IEEE Instrumentation and
Measurement Technology Conference, IMTC/99., vol-
ume 1, pages 557 –561 vol.1.
Chan, A., Hamdy, M., Badre, A., and Badee, V. (2008).
Wavelet distance measure for person identification us-
ing electrocardiograms. IEEE Transactions on Instru-
mentation and Measurement, pages 248–253.
Christov, I. I. (2004). Real time electrocardiogram QRS
detection using combined adaptive threshold. Biomed
Eng Online, 3(1).
Christov, I. I. and T, S. (2002). Steep slope method for real
time qrs detection. Electrotechniques and Electronics,
pages 13 –17.
Coutinho, D. P., Fred, A., and Figueiredo, M. (2010). Per-
sonal identification and authentication based on one-
lead ECG using ziv-merhav cross parsing. In Proc.
Int. Workshop PRIS’2010, pages 15–24.
Engelse, W. and Zeelenberg, C. (1979). A single scan algo-
rithm for QRS detection and feature extraction. IEEE
Comp in Card, pages 37–42.
Friesen, G., Jannett, T., Yates, M. J. S., Quint, S., and Nagle,
H. (1990). A comparison of the noise sensitivity of
nine QRS detection algorithms. IEEE Transactions
on Biomedical Engineering, 37(1):85 –98.
Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D.,
and Wiederhold, B. K. (2005). ECG to identify indi-
viduals. Pattern Recogn., 38:133–142.
Kohler, B. U., Hennig, C., and Orglmeister, R. (2002). The
principles of software QRS detection. Engineering in
Medicine and Biology Magazine, IEEE, 21(1):42–57.
Lourenc¸o, A., Silva, H., and Fred, A. (2011). Unveiling
the biometric potential of Finger-Based ECG signals.
Computational Intelligence and Neuroscience, 2011.
Oeff, M., Koch, H., Bousseljot, R., and Kreiseler, D. The
PTB diagnostic ECG database. National Metrology
Institute of Germany.
Pan, J. and Tompkins, W. J. (1985). A real-time qrs detec-
tion algorithm. Biomedical Engineering, IEEE Trans-
actions on, BME-32(3):230 –236.
PLUX. bioPLUX research. http://www.plux.info.
Shen, T., Tompkins, W., and Hu, Y. (2002). One-lead QRS
for identity verification. In Proceedings of the Second
Joint EMBS/BMES Conference, pages 62–63.
Silva, H., Gamboa, H., and Fred, A. (2007). One lead
ECG based personal identification with feature sub-
space ensembles. In 5th International Conference on
Machine Learning and Data Mining, pages 770–783.
Silva, H., Lourenc¸o, A., Lourenc¸o, R., Leite, P., Coutinho,
D., and Fred, A. (2011). Study and evaluation of a sin-
gle differential sensor design based on electro-textile
electrodes for ECG biometrics applications. In Proc
IEEE Sensors, Limerick, Ireland.
BIOSIGNALS 2012 - International Conference on Bio-inspired Systems and Signal Processing
54