WBT1 WBT2 DWITB50 DWITB400 DWITB800 DWITB1000
0
50
100
150
200
250
300
350
400
450
500
voxel value group A n 6
WBT1 WBT2 DWITB50 DWITB400 DWITB800 DWITB1000
0
50
100
150
200
250
300
350
400
450
500
voxel group B n 17
Figure 3: Ranksum test on T1, T2 and DWI (b50, b1000) voxels values in patient from group A and B.
Table 2: Median and quartile of lesion (L) and healthy bone marrow (H) pixel values of the different techniques.
techniques median
L
q 25
L
q 75
L
median
H
q 25
H
q 75
H
T1 397 287 470 517 412 596
T2 28.3 20.8 34.4 40.2 35.3 48.3
DWIb50 49.2 30.3 68.2 14.1 10.5 15.4
DWIb1000 23.7 13.5 36.2 7.31 5.36 8.49
REFERENCES
Ghanem, N., Lohrmann, C., Monika Engelhardtand Gre-
gor Pache, M. U., Saueressig, U., Kotter, E., and
Langer, M. (2006). Whole-body mri in the de-
tection of bone marrow infiltration in patients with
plasma cell neoplasms in comparison to the radiolog-
ical skeletal survey. Eur Radiol, 16:1005–1014.
Khoo, M., Tyler, P., Saifuddin, A., and Padhani, A. (2011).
Diffusion-weighted imaging (DWI) in musculoskele-
tal MRI: a critical review. Skeletal Radiology, pages
1–17.
Koh, D.-M. and Collins, D. J. (2007). Diffusion-Weighted
MRI in the body: Applications and challenges in on-
cology. Am. J. Roentgenol., 188(6):1622–1635.
Lee, S., Wolberg, G., and Shin, S. Y. (1997). Scattered
data interpolation with multilevel b-splines. IEEE
Transactions on Visualization and Computer Graph-
ics, 3:228–244.
Lee, S., Wolberg, G., yong Chwa, K., and Shin, S. Y.
(1996). Image metamorphosis with scattered feature
constraints. IEEE Transactions on Visualization and
Computer Graphics, 2:337–354.
Padhani, A. R., Liu, G., Koh, D. M. M., Chenevert,
T. L., Thoeny, H. C., Takahara, T., Dzik-Jurasz, A.,
Ross, B. D., Van Cauteren, M., Collins, D., Ham-
moud, D. A., Rustin, G. J., Taouli, B., and Choyke,
P. L. (2009). Diffusion-weighted magnetic resonance
imaging as a cancer biomarker: consensus and recom-
mendations. Neoplasia (New York, N.Y.), 11(2):102–
125.
Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M.,
and Hawkes, D. (1999). Nonrigid registration us-
ing free-form deformations: application to breast mr
images. IEEE Transactions on Medical Imaging,
18(8):712–721.
Sakurada, A., Takahara, T., Kwee, T. C., Yamashita, T.,
Nasu, S., Horie, T., Cauteren, M. V., and Imai,
Y. (2009). Diagnostic performance of diffusion-
weighted magnetic resonance imaging in esophageal
cancer. Eur Radiol, 19:1461–1469.
Schnabel, J. A., Rueckert, D., Quist, M., Blackall, J.,
Castellano-Smith, A., Hartkens, T., Penney, G., Hall,
W., Liu, H., Truwit, C., Gerritsen, F., Hill, D.,
and Hawkes, D. (2001). A generic framework for
non-rigid registration based on non-uniform multi-
level Free-Form deformations. In Niessen, W. and
Viergever, M., editors, Medical Image Computing and
Computer-Assisted Intervention
ˆ
a MICCAI 2001, vol-
ume 2208 of Lecture Notes in Computer Science,
chapter 69, pages 573–581. Springer Berlin / Heidel-
berg, Berlin, Heidelberg.
Sommer, G., Klarh
˜
A¶fer, M., Lenz, C., Scheffler, K., Bon-
gartz, G., and Winter, L. (2010). Signal characteristics
of focal bone marrow lesions in patients with multi-
ple myeloma using whole body T1w-TSE, T2w-STIR
and diffusion-weighted imaging with background sup-
pression. European Radiology, pages 1–6–6.
BIOSIGNALS 2012 - International Conference on Bio-inspired Systems and Signal Processing
566