Busygin, S. (2006). A new trust region technique for
the maximum weight clique problem. Discrete Appl.
Math., 154(15):2080–2096.
Caetano, T. S., McAuley, J. J., Cheng, L., Le, Q. V.,
and Smola, A. J. (2009). Learning graph matching.
TPAMI, 31(6):1048–1058.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR, pages 886–
893.
De Raedt, L. (2008). Logical and Relational Learning.
Springer.
De Raedt, L. and Ramon, J. (2009). Deriving distance met-
rics from generality relations. Pattern Recognition
Letters, 30(3):187–191.
Deselaers, T. and Ferrari, V. (2010). Global and efficient
self-similarity for object classification and detection.
In CVPR, pages 1633–1640.
Dubba, K. S. R., Cohn, A. G., and Hogg, D. C. (2010).
Event model learning from complex videos using ILP.
In ECAI, pages 93–98.
Esposito, F., Malerba, D., and Semeraro, G. (1992). Clas-
sification in noisy environments using a distance mea-
sure between structural symbolic descriptions. PAMI,
14(3):390–402.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2008). The PASCAL Visual
Object Classes Challenge 2008.
Felzenszwalb, P., Girshick, R., McAllester, D., and Ra-
manan, D. (2010). Object detection with discrimina-
tively trained part-based models. TPAMI, 32(9):1627
–1645.
Fergus, R., Perona, P., and Zisserman, A. (2007). Weakly
supervised scale-invariant learning of models for vi-
sual recognition. IJCV, 71(3):273–303.
Ferilli, S., Mauro, N. D., Basile, T. M. A., and Esposito, F.
(2003). A complete subsumption algorithm. In AI*IA
2003, pages 23–26.
Ferrari, V., Fevrier, L., Jurie, F., , and Schmid, C. (2008).
Groups of adjacent contour segments for object detec-
tion. TPAMI, pages 36–51.
Getoor, L., Koller, D., Taskar, B., and Friedman, N. (2000).
Learning probabilistic relational models with struc-
tural uncertainty. In Proceedings of the ICML-2000
Workshop on Attribute-Value and Relational Learn-
ing:Crossing the Boundaries, pages 13–20.
Hanson, A. and Riseman, E. (1978). Visions: A computer
system for interpreting scenes. In CVS78, pages 303–
333.
Harchaoui, Z. and Bach, F. (2007). Image classification
with segmentation graph kernels. In CVPR, pages 1–
8.
Hartz, J. (2009). Learning probabilistic structure graphs
for classification and detection of object structures. In
ICMLA ’09, pages 5–11.
Hartz, J. and Neumann, B. (2007). Learning a knowledge
base of ontological concepts for high-level scene in-
terpretation. In ICMLA, pages 436–443.
Horv
´
ath, T., Wrobel, S., and Bohnebeck, U. (2001). Re-
lational instance-based learning with lists and terms.
ML, 43(1/2):53–80.
Kirsten, M., Wrobel, S., and Horv
´
ath, T. (2000). Distance
based approaches to relational learning and clustering.
Relational Data Mining, pages 213–230.
Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., and
Paragios, N. (2009). Single view reconstruction using
shape grammars for urban environments. In ICCV,
pages 1795–1802.
Li, L.-J., Socher, R., and Fei-Fei, L. (2009). Towards
total scene understanding: Classification, annotation
and segmentation in an automatic framework. CVPR,
0:2036–2043.
Lippow, M. A., Kaelbling, L. P., and Lozano-Perez, T.
(2008). Learning grammatical models for object
recognition. In Technical Report.
Lozin, V. and Milanic, M. (2010). On the maximum
independent set problem in subclasses of planar
graphs. Journal of Graph Algorithms and Applica-
tions, 14:269–286.
Muggleton, S. and Buntine, W. L. (1988). Machine inven-
tion of first order predicates by inverting resolution. In
ML, pages 339–352.
M
¨
uller, P., Zeng, G., Wonka, P., and Van Gool, L. J. (2007).
Image-based procedural modeling of facades. ACM
Transactions on Graphics, 26(3):85.
Nienhuys-Cheng, S.-H. (1997). Distance between herbrand
interpretations: A measure for approximations to a
target concept. In ILP, pages 213–226.
¨
Osterg
˚
ard, P. R. J. (2002). A fast algorithm for the maxi-
mum clique problem. Discrete Appl. Math., 120:197–
207.
Petrou, M. (2008). The tower of knowledge: a novel ar-
chitecture for organising knowledge combining logic
and probability. In Logic and Probability for Scene
Interpretation, Dagstuhl Seminar Proceedings.
Pinz, A. J., Bischof, H., Kropatsch, W. G., Schweighofer,
G., Haxhimusa, Y., Opelt, A., and Ion, A. (2009).
Representations for cognitive vision: A review of
appearance-based, spatio-temporal, and graph-based
approaches. Electronic Letters on Computer Vision
and Image Analysis, 7(2):35–61.
Russell, B. C., Torralba, A., Murphy, K. P., and Freeman,
W. T. (2008). LabelMe: A database and web-based
tool for image annotation. IJCV, 77(1-3):157–173.
Sudderth, E. B., Torralba, A., Freeman, W. T., and Willsky,
A. S. (2008). Describing visual scenes using trans-
formed objects and parts. IJCV, 77(1-3):291–330.
Szeliski, R. (2010). Computer Vision: Algorithms and Ap-
plications. Springer.
Torralba, A., Murphy, K. P., and Freeman, W. T. (2004).
Sharing features: Efficient boosting procedures for
multiclass object detection. In CVPR, pages 762–769.
Tuytelaars, T. and Mikolajczyk, K. (2007). Local invariant
feature detectors: A survey. Foundations and Trends
in Computer Graphics and Vision, 3(3):177–280.
Zhao, P., Fang, T., Xiao, J., Zhang, H., Zhao, Q., and Quan,
L. (2010). Rectilinear parsing of architecture in urban
environment. In CVPR, pages 342–349.
Zhu, S.-C. and Mumford, D. (2006). A stochastic gram-
mar of images. Found. Trends. Comput. Graph. Vis.,
2(4):259–362.