Table 5: Main parameters summary. Data are referred to
each input channel.
parameter value
Gain 46dB
f
L
, f
H
800Hz, 7.2kHz
Power 250µW
Area 0.4mm
2
IRN 2.4µV
rms
resolution 16.12bit
that provides a gain of 200V /V in the bandwidth
range 800HZ − 7.2kHz. The signal is then converted
in the digital domain by a 16-bit sigma delta modula-
tor and transmitted to the digital part of the system for
decimation, highly selective band-pass filtering and
further signal processing. The analog front-end of the
designed system (prefiltering/preamplifier and sigma-
delta modulator) exhibits a total area of 0.4mm
2
with
a 240µV power consumption (for each input channel).
Simulation results show that the system is capable
to record a neural signal in the order of magnitude
of tens of microvolts thanks to its low IRN equal to
2.4µV
rms
.
ACKNOWLEDGEMENTS
The work described was supported by MIUR (Ital-
ian Ministry of Education, University and Research)
through project Openhand (PRIN 2008). The au-
thors wish to thank Laura Muggianu for helping with
the design and simulations and Silvestro Micera of
Scuola Superiore Sant’Anna di Pisa (SSSA) for neu-
ral traces providing.
REFERENCES
Dhillon, G. S. and Horch, K. W. (2005). Direct neural sen-
sory feedback and control of a prosthetic arm. IEEE
Trans. on Neural Systems and Rehabilitation Engi-
neering, pages 468–472.
Guo, H., Champion, C., Rector, D. M., and La Rue, G.
(2004). A low-power low-noise sensor ic. 2004
IEEE Workshop on Microelectronics and Electronic
Devices, pages 60–63.
Harrison, R. R. (2007). A versatile integrated circuit for the
acquisition of biopotentials. Custom Integrated Cir-
cuits Conference, pages 115–122.
Harrison, R. R. and Charles, C. (2003). A low-power
low-noise cmos amplifier for neural recording appli-
cations. IEEE Journal of Solid-State Circuits, 38:958–
965.
Lee, S. Y. and Lee, S. C. (2005). An implantable wireless
bidirectional communication microstimulator for neu-
romuscolar stimulation. IEEE Trans. Circuit System,
52:2526–2538.
Limnuson, K., Tyler, D. J., and Mohseni, P. (2009). Inte-
grated electronics for peripheral nerve recording and
signal processing. 31st Annual International Confer-
ence of the IEEE EMBS, pages 1639–1642.
Liu, W., Vichienchom, K., Clements, M., DeMarco, S.,
Hughes, C., McGucken, E., Humayun, M., De Juan,
E., Weiland, J., and Greenberg, R. (2000). A neuro-
stimulus chip with telemetry unit for retinal pros-
thetic device. IEEE Journal of Solid-State Circuits,
35:1487–1497.
Loi, D., Carboni, C., Angius, G., Angotzi, G., Barbaro, M.,
Raffo, L., Raspopovic, S., and Navarro, X. (2011). Pe-
ripheral neural activity recording and stimulation sys-
tem. IEEE Trans. Biomedical Circuit System, 5:368–
379.
Malcovati, P., Brigati, S., Francesconi, F., Maloberti, F.,
Cusinato, P., and Baschirotto, A. (2003). Behavioral
modeling of switched-capacitor sigmadelta modula-
tors. IEEE Trans. on Circuits and Systems-I, 5:352–
364.
Micera, S., Citi, L., Rigosa, J., Carpaneto, J., Raspopovic,
S., Di Pino, G., Rossini, L., Yoshida, K., Denaro, L.,
Dario, P., and Rossini, P. M. (2010). Decoding infor-
mation from neural signals recorded using intraneu-
ral electrodes: Toward the development of a neuro-
controlled hand prosthesis. Proceedings of the IEEE,
98(3):407–417.
Pereira, E., Green, A., and Nandi, D. (2007). Deep brain
stimulation: indications and evidence. Expert Rev
Med Devices, 4:591–603.
Razavi, B. (2001). Design of analog cmos integrated cir-
cuits. McGRAW HILL International Edition.
Rieger, R., Taylor, J., Demosthenous, A., Donaldson, N.,
and Langlois, P. J. (2003). Design of a low-noise
preamplifier for nerve cuff electrode recording. IEEE
Journal of Solid-State Circuits, 38(8):1373–1379.
Schreier, R. and Gabor C., T. (2001). Understand-
ing delta-sigma data converters. IEEE Press/Wiley-
Interscience.
Von Arx, J. and Najafi, K. (1999). A wireless single-chip
telemetry-powered neural stimulation system. IEEE
Journal of Solid-State Circuits, pages 214–215.
Yoshida, K. and Stein, R. B. (1999). Characterization of
signals and noise rejection with bipolar longitudinal
intrafascicular electrodes. IEEE Trans Biomed Eng,
46:226–234.
Zare-Hoseini, H., Kale, I., and Shoaei, O. (2005). Mod-
eling of switched-capacitor deltasigma modulators in
simulink. IEEE Trans. on Instrumental and Measure-
ment, 54:1646–1654.
BIODEVICES 2012 - International Conference on Biomedical Electronics and Devices
212