REFERENCES
Chang, C. and Lin, C. (2011). LIBSVM: A Library for
Support Vector Machines.
Chen, Q. and Shao, Y. (2008). The Application of Im-
proved BP Neural Network Algorithm in Urban Air
Quality Prediction: Evidence from China. In Proceed-
ing of 2008 IEEE Pacific-Asia Workshop on Computa-
tional Intelligence and Industrial Application (PACIIA
2008), pages 160–163.
Cherkassky, V. and Ma, Y. (2004). Practical Selection of
SVM Parameters and Noise Estimation for SVM Re-
gression. In Neural Networks, volume 17, pages 113–
126.
Han, B., Vucetic, S., Braverman, A., and Obradovic, Z.
(2006). A Statistical Complement to Deterministic Al-
gorithms for the Retrieval of Aerosol Optical Thick-
ness from Radiance Data. In Engineering Applica-
tions of Artificial Intelligence, volume 19, pages 787–
795. Pergamon Pess.
Ichoku, C., Chu, D., Mattoo, S., Kaufman, Y., Remer, L.,
Tanr, D., Slutsker, I., and Holben, B. (2002). A spatio-
temporal approach for global validation and analysis
of MODIS aerosol products. In Geophysical Research
Letter, volume 29, pages 1–4.
Kaufman, Y. J. and Tanre, D. (1997). Algorithm for re-
mote sensing of tropospheric aerosol from modis. In
MODIS ATBD. NASA.
Lary, D., Remer, L., MacNeill, D., Roscoe, B., and Par-
adise, S. (2009). Machine Learning Bias Correction of
MODIS Aerosol Optical Depth. In IEEE Geoscience
and Remote Sensing Letters, volume 4, pages 694–
698.
Li, C., Lau, A., Mao, J., and Chu, D. (2005). Retrieval,
Validation, and Application of the 1-km Aerosol Op-
tical Depth from MODIS Measurements over Hong
Kong. In IEEE Transactions on Geoscience and Re-
mote Sensing, volume 43, pages 2650–2658.
Lu, W., Wang, W., Leung, A., Lo, S., Yuen, R., Xu, Z., and
Fan, H. (2002). Air Pollutant Parameter Forecasting
Using Support Vector Machine. In Proceeding of the
2002 International Joint Conference on Neural Net-
work (IJCNN02), pages 630–635.
Martins, J., Tanr, D., Remer, L., Kaufman, Y., Matto, S.,
and Levy, R. (2009). MODIS cloud screening for
remote sensing of aerosols over oceans using spa-
tial variability. In Geophysical Research Letters, vol-
ume 29.
MEEO, M. E. E. O. (2011). SOIL MAPPER
R
.
NASA (2011). AErosol Robotic Network (AERONET).
Nguyen, T., Mantovani, S., and Bottoni, M. (2010a). Es-
timation of Aerosol and Air Quality Fields with PM
MAPPER An Optical Multispectral Data Processing
Package. In ISPRS TC VII Symposium 100 year IS-
PRS, volume XXXVIII(7A), pages 257–261.
Nguyen, T., Mantovani, S., Campalani, P., Cavicchi, M.,
and Bottoni, M. (2010b). Aerosol Optical Thickness
Retrieval from Satellite Observation Using Support
Vector Regression. In Progress in Pattern Recogni-
tion, Image Analysis, Computer Vision, and Appli-
cations - 15th Iberoamerican Congress on Pattern
Recognition (CIARP2010), pages 492–499. Springer.
Obradovic, S., Das, D., Radosavljevic, V., Ristovski, K.,
and Vucetic, S. (2010). Spatio-Temporal Characteri-
zation of Aerosols through Active Use of Data from
Multiple Sensors. In ISPRS TC VII Symposium 100
year ISPRS, volume XXXVIII(7B), pages 424–429.
Okada, Y., Mukai, S., and Sano, I. (2001). Neural Network
Approach for Aerosol Retrieval. In IEEE 2001 Inter-
national Geoscience and Remote Sensing Symposium
(IGARSS01), volume 4, pages 1716–1718.
Oo, M., Hernandez, E., Jerg, M., Moshary, B., and Ahmed,
S. (2008). Improved MODIS Aerosol Retrieval Using
Modified VIS/MIR Surface Albedo Ratio over Urban
Scenes. In IEEE 2008 International Geoscience and
Remote Sensing Symposium (IGARSS08), volume 3,
pages 977–979.
Osowski, S. and Garanty, K. (2006). Wavelets and Sup-
port Vector Machine for Forecasting the Meteorologi-
cal Pollution. In Proceeding of the 7th Nordic Signal
Processing Symposium (NORSIG), pages 158–61.
Ramakrishnan, R., Schauer, J., Chen, L., Huang, Z., Shafer,
M., Gross, D., and Musicant, D. (2005). The EDAM
project: Mining atmospheric aerosol datasets. In In-
ternational Journal of Intelligent Systems, volume 20
(7), pages 759–787.
Remer, L., Tanr, D., and Kaufman, Y. (2004). Algorithm
for Remote Sensing of Tropospheric Aerosol from
MODIS: Collection 5. In MODIS ATBD. NASA.
Ren, R., Guo, S., and Gu, L. (2010). Fast bowtie effect
elimination for MODIS L1B data. In The Journal of
China Universities of Posts and Telecommunications,
volume 17(1), pages 120–126. Elsevier.
Siwek, K., Osowski, S., Garanty, K., and Sowinski, M.
(2008). Ensemble of Neural Predictors for Forecast-
ing the Atmospheric Pollution. In IEEE International
Joint Conference on Neural Network, pages 643–648.
Vapnik, V. (1995). The nature of statistical learning theory.
Springer-Verlag, Berlin.
Vucetic, S., Han, B., Mi, W., Li, Z., and Obradovic, Z.
(2008). A Data-Mining Approach for the Validation
of Aerosol Retrievals. In IEEE Geoscience and Re-
mote Sensing Letter, volume 5(1), pages 113–117.
Xu, Q., Obradovic, Z., Han, B., Li, Y., Braverman, A., and
Vucetic, S. (2005). Improving Aerosol Retrieval Ac-
curacy by Integrating AERONET, MISR and MODIS
Data. In The 8th Intenational Conference on Informa-
tion Fusion, volume 1.
DOWNSCALING AEROSOL OPTICAL THICKNESS TO 1 KM2 SPATIAL RESOLUTION USING SUPPORT
VECTOR REGRESSION REPLIED ON DOMAIN KNOWLEDGE
239