exerted during movements. Clinical Biomechanics,
22(2):131–154.
Favre, P., Gerber, C., and Snedeker, J. G. (2010). Auto-
mated muscle wrapping using finite element contact
detection. Journal of Biomechanics, 43(10):1931–
1940.
Gao, F., Damsgaard, M., Rasmussen, J., and Christensen,
S. T. (2002). Computational method for muscle-path
representation in musculoskeletal models. Biological
Cybernetics, 87(3):199–210.
Garner, B. and Pandy, M. (2000). The obstacle-set method
for representing muscle paths in musculoskeletal
models. Computer Methods in Biomechanics and
Biomedical Engineering, 3(1):1–30.
Gatlin, K. S. and Isensee, P. (2010). Reap
the benefits of multithreading without all
the work. http://msdn.microsoft.com/en-
us/magazine/cc163717.aspx.
Hoppe, H. (1999). New quadric metric for simplifying
meshes with appearance attributes. Proc IEEE Con-
ference on Visualization VIS99, pages 59–66.
Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng,
S.-H., Bao, H., Guo, B., and Shum, H.-Y. (2006).
Subspace gradient domain mesh deformation. ACM
Transactions on Graphics, 25(3):1126–1134.
Jensen, R. and Davy, D. (1975). An investigation of muscle
lines of action about the hip: A centroid line approach
vs the straight line approach. Journal of Biomechan-
ics, 8(2):103–110.
Ju, T., Schaefer, S., and Warren, J. (2005). Mean value
coordinates for closed triangular meshes. ACM Trans-
actions on Graphics, 24(3):561–566.
Kohout, J., Clapworthy, G. J., Martelli, S., Wei, H., Vice-
conti, M., and Agrawal, A. (2011). Fast muscle wrap-
ping. Computers & Graphics. Submitted for publica-
tion.
Li, S. Z. (1994). Markov random field models in com-
puter vision. In Eklundh, J.-O., editor, ECCV (2), vol-
ume 801 of Lecture Notes in Computer Science, pages
361–370. Springer.
Marsden, S. P. and Swailes, D. C. (2008). A novel approach
to the prediction of musculotendon paths. Proceed-
ings of the Institution of Mechanical Engineers Part H
Journal of engineering in medicine, 222(1):51–61.
Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. (2006).
Laplacian mesh optimization. In Proceedings of the
4th international conference on Computer graphics
and interactive techniques in Australasia and South-
east Asia, GRAPHITE ’06, pages 381–389, New
York, NY, USA. ACM.
nVidia (2011). Cuda zone. http://developer.nvidia.com/ca
tegory/zone/cuda-zone.
OpenSim (2010). Opensim project, https://simtk.org/home
/opensim.
Rohmer, D., Hahmann, S., and Cani, M.-P. (2008). Lo-
cal volume preservation for skinned characters. Com-
puter, 27(7):1919–1927.
Schroeder, W., Martin, K., and Lorensen, B. (2004). The
Visualization Toolkit, Third Edition. Kitware Inc.
Testi, D., Quadrani, P., and Viceconti, M. (2010). Phys-
iomespace: digital library service for biomedical
data. Philos Transact A Math Phys Eng Sci,
368(1921):2853–2861.
van der Helm, F. and Veenbaas, R. (1991). Modelling the
mechanical effect of muscles with large attachment
sites: Application to the shoulder mechanism. Journal
of Biomechanics, 24(12):1151–1163.
Viceconti, M., Astolfi, L., Leardini, A., Imboden, S.,
Petrone, M., Quadrani, P., Taddei, F., Testi, D., and
Zannoni, C. (2004). The multimod application frame-
work. Information Visualisation, International Con-
ference on, 0:15–20.
Von Funck, W., Theisel, H., and Seidel, H. P. (2008).
Volume-preserving mesh skinning. In Vision Model-
ing and Visualization, pages 409–414. IOS Press.
VPHOP (2010). the osteoporotic virtual physiological hu-
man, http://vphop.eu.
Xu, W.-W. and Zhou, K. (2009). Gradient domain mesh
deformation a survey. Journal of Computer Science
and Technology, 24(1):6–18.
Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B.,
and Shum, H.-Y. (2005). Large mesh deformation us-
ing the volumetric graph laplacian. ACM SIGGRAPH
2005 Papers on SIGGRAPH 05, 1(212):496.
FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM
25