Jones. G. A., 1997. Constraint, Optimization, and
Hierarchy: Reviewing Stereoscopic Correspondence of
Complex Features. In Computer Vision and Image
Understanding, 65(1), pp. 57-78.
Lazaros, N., Sirakoulis, G. C., Gasteratos A., 2008.
Review of Stereo Vision Algorithms: From Software
to Hardware. International Journal of
Optomechatronics, 2(4), pp.435 – 462.
Lim, S. N., Mittal, A., Davis, L., Paragios, N., 2004.
Uncalibrated stereo rectification for automatic 3D
surveillance. In International Conference on Image
Processing, 2, pp.1357.
Lu, J., Ke Zhang, Lafruit, G., Catthoor, F. 2009. Real-time
stereo matching: A cross-based local approach. In
International Conference on Acoustics, Speech and
Signal Processing, pp.733-736, Washington, DC,
USA, April 19 - 24, 2009.
MacLean, W. J., Sabihuddin, S., Islam, J., 2010.
Leveraging cost matrix structure for hardware
implementation of stereo disparity computation using
dynamic programming. Computer Vision and Image
Understanding, In Press.
Needleman, S. B., Wunsch, C.D., 1970. A general method
applicable to the search for similarities in the
aminoacid sequence of two proteins. Journal of
Molecular Biology, 48(3), pp.443–53.
Note, J. B., Shand, M., Vuillemin, J., 2006. Real-Time
Video Pixel Matching. In FPL , pp. 1-6.
Ohta, Y., Kanade, T., 1985. Stereo by intra- and
interscanline search using dynamic programming.
IEEE TPAMI, 7(2), pp.139–154.
Oram., D., 2001. Rectification for Any Epipolar
Geometry. In BMVC, pp. 653-662.
Pollefeys, M., Koch, R., Van Gool, L., 1999. A simple and
efficient rectification method for general motion. In
International Conference on Computer Vision, vol 1,
pp. 496-501.
Roy, S., Meunier, J., Cox, I., 1997. Cylindrical
Rectification to Minimize Epipolar Distortion. In
Conference on Computer Vision and Pattern
Recognition, pp.393-399.
Salmen, J., Schlipsing, M., Edelbrunner, J., Hegemann, S.,
Lueke, S., 2009. Real-time stereo vision: making more
out of dynamic programming. In International
Conference on Computer Analysis of Images and
Patterns, Münster, Germany, Sept. 2-4.
Scharstein, D., Szeliski, R, 2002. A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1), pp.7-42.
Scharstein, D., Szeliski, R, 2003. High-accuracy stereo
depth maps using structured light. In IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 195-202.
Sun, C., 2002. Fast Stereo Matching Using Rectangular
Subregioning and 3D Maximum-Surface Techniques.
In International Journal of Computer Vision archive,
47 (1-3), pp. 99-107.
Sun., C., 2002. Fast Optical Flow Using 3D Shortest Path
Techniques. In Image and Vision Computing,
20(13/14), pp. 981-991.
Tappen, M., Freeman, W., 2003. Comparison of graph
cuts with belief propagation for stereo, using identical
MRF parameters, in: IEEE International Conference
on Computer Vision (ICCV), 2, pp. 900–906.
Tippetts, B., Lee, D. J., Archibald, J., 2010. Fast
correspondence of unrectified stereo images using
genetic algorithm and spline representation. In
Intelligent Robots and Computer Vision XXVII:
Algorithms and Techniques, 7539, 17 January 2010.
Torr, P. H. S., Criminisi, A., 2004. Dense stereo using
pivoted dynamic programming. Image and Vision
Computing, 22(10), pp.795-806.
Vanetti, M., Gallo, I., Binaghi, E., 2009. Dense Two-
Frame Stereo Correspondence by Self-organizing
Neural Network. In ICIAP 2009, LNCS 5716,
pp.1035–1042.
Veksler, O., 2005. Stereo correspondence by dynamic
programming on a tree. In Computer Vision and
Pattern Recognition, San Diego, CA, USA, 20-26.
Willson, R. G., Johnson, A. E., Goguen, J. D., 2005.
MOC2DIMES: A camera simulator for the mars
exploration Rover descent image motion estimation
system. In Proc. 8th Int'l. Symp. Artificial Intelligence,
Robotics and Automation in Space.
Wan, D., Zhou, J., 2008. Stereo vision using two PTZ
cameras. Computer Vision and Image Understanding,
112, pp.184–194.
Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D., 2006.
High-quality real-time stereo using adaptive cost
aggregation and dynamic programming. In 3D Data
Processing, Visualization and Transmission. Chapel
Hill, USA, June 14-16.
Yang, Q., Wang, L., Yang, R., 2006. Real-time Global
Stereo Matching Using Hierarchical Belief
propagation. In BMVC 2006, Edinburgh, UK.
Yaguchi, Y., Iseki, K., Oka, R., 2009. Optimal Pixel
Matching between Images. In PSIVT pp. 597-610.
Yin, X. C., Sun, J., 2007. Perspective Rectification for
Mobile Phone Camera-Based Documents Using a
Hybrid Approach to Vanishing Point Detection,
CBDAR'07, pp. 37-44.
Zhengping, J., 1988. On the multi-scale iconic
representation for low-level computer vision systems.
In PhD thesis, The Turing Institute and The University
of Strathclyde, 1988.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
224