improved accuracy in the early tracking stage.
We have gained significant speedup by deploying
parallel processing on the GPU, from 1 frame per sec-
ond to 10 frames per second which is broadly com-
parable to current standard CCTV installations. This
allows near-real-time tracking of large numbers of ob-
jects.
We will next investigate further improvements to
our implementation to optimise thread occupancy on
the GPU. In the longer term we will explore real
time object tracking between non-overlapping cam-
eras where we think our texture approach will im-
prove object handover.
REFERENCES
An, K. H. and Chung, M. J. (2008). 3d head tracking and
pose-robust 2d texture map-based face recognition us-
ing a simple ellipsoid model. In Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems IROS 2008,
pages 307–312.
Bardet, F. and Chateau, T. (2008). Mcmc particle filter for
real-time visual tracking of vehicles. In Proc. 11th
International IEEE Conference on Intelligent Trans-
portation Systems ITSC 2008, pages 539–544.
Berclaz, J., Fleuret, F., and Fua, P. (2009). Multiple ob-
ject tracking using flow linear programming. In Proc.
Twelfth IEEE Int Performance Evaluation of Tracking
and Surveillance (PETS-Winter) Workshop, pages 1–
8.
Bernardin, K. and Stiefelhagen, R. (2008). Evaluating mul-
tiple object tracking performance: the clear mot met-
rics. J. Image Video Process., 2008:1–10.
Boyer, M., Tarjan, D., Acton, S. T., and Skadron, K. (2009).
Accelerating leukocyte tracking using cuda: A case
study in leveraging manycore coprocessors. In Proc.
IEEE International Symposium on Parallel & Dis-
tributed Processing IPDPS 2009, pages 1–12.
Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier,
E., and Van Gool, L. (2010). Online multi-
person tracking-by-detection from a single, uncali-
brated camera. PAMI. Early Access.
del Blanco, C. R., Mohedano, R., Garcia, N., Salgado,
L., and Jaureguizar, F. (2008). Color-based 3d par-
ticle filtering for robust tracking in heterogeneous en-
vironments. In Proc. Second ACM/IEEE International
Conference on Distributed Smart Cameras ICDSC
2008, pages 1–10.
Derpanis, K. G. (2007). Integral image-based representa-
tions. Department of Computer Science and Engineer-
ing York University Paper.
Deutscher, J., Blake, A., and Reid, I. (2000). Articulated
body motion capture by annealed particle filtering.
In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, volume 2, pages 126–133.
Eberly, D. (1999). Perspective projection of an ellipse.
www.geometrictools.com.
Ferryman, J. and Shahrokni, A. (2009). Pets2009: Dataset
and challenge. In Proc. Twelfth IEEE Int Per-
formance Evaluation of Tracking and Surveillance
(PETS-Winter) Workshop, pages 1–6.
Husz, Z. L., Wallace, A. M., and Green, P. R. (2011). Track-
ing with a hierarchical partitioned particle filter and
movement modelling. SMCB, pages 1–14. Early Ac-
cess.
Isard, M. and Blake, A. (1996). Contour tracking by
stochastic propagation of conditional density. In
ECCV ’96: Proceedings of the 4th European Confer-
ence on Computer Vision-Volume I, pages 343–356,
London, UK. Springer-Verlag.
Jaward, M., Mihaylova, L., Canagarajah, N., and Bull, D.
(2006). Multiple object tracking using particle filters.
In Aerospace Conference, 2006 IEEE, page 8 pp.
Kreucher, C., Kastella, K., and Hero, A. O. (2005). Mul-
titarget tracking using the joint multitarget probability
density. AES, 41(4):1396–1414.
NVIDIA (2010). Nvidia cuda c best practice guide.
Peursum, P., Venkatesh, S., and West, G. (2007). Tracking-
as-recognition for articulated full-body human motion
analysis. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition CVPR ’07, pages 1–8.
Ristic, B., Arulampalam, S., and Gordon, N. (2004). Be-
yound the Kalman Filter Particle Filter for Tracking
Application. DSTO.
Schneider, P. J. and Eberly, D. H. (2003). Geometric Tools
for Computer Graphics. Elsevier.
Sidenbladh, H., De la Torre, F., and Black, M. J. (2000).
A framework for modeling the appearance of 3d ar-
ticulated figures. In Proc. Fourth IEEE International
Conference on Automatic Face and Gesture Recogni-
tion, pages 368–375.
Stauffer, C. and Grimson, W. E. L. (1999). Adaptive back-
ground mixture models for real time tracking. In Proc.
IEEE Computer Society Conference on. Computer Vi-
sion and Pattern Recognition, volume 2, page 252 Vol.
2.
Vezzani, R., Grana, C., and Cucchiara, R. (2011). Prob-
abilistic people tracking with appearance models and
occlusion classification: The AD-HOC system. Pat-
tern Recognition Letters, 32(6):867–877.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Proc. IEEE
Computer Society Conf. Computer Vision and Pattern
Recognition CVPR 2001, volume 1.
Weisstein, E. (1999). Sphere point picking. From
MathWorld–A Wolfram Web Resource.
Zechner, M. and Granitzer, M. (2009). Accelerating k-
means on the graphics processor via cuda. In Proc.
First International Conference on Intensive Applica-
tions and Services INTENSIVE ’09, pages 7–15.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
234