Juan-Arinyo, R. (1995). Domain extension of isothetic
polyhedra with minimal CSG representation. Com-
puter Graphics Forum, 5:281 – 293.
Khachan, M., Chenin, P., and Deddi, H. (2000). Polyhedral
representation and adjacency graph in n-dimensional
digital images. Computer Vision and Image under-
standing, 79:428 – 441.
Kim, B. H., Seo, J., and Shin, Y. G. (2001). Binary volume
rendering using Slice-based Binary Shell. The Visual
Computer, 17:243 – 257.
Kong, T. and Rosenfeld, A. (1989). Digital topology: Intro-
duction and survey. Computer Vision, Graphics and
Image Processing, 48:357–393.
Konkle, S. F., Moran, P. J., Hamann, B., and Joy, K. I.
(2003). Fast methods for computing isosurface topol-
ogy with Betti numbers. In Data Visualization: the
sate of the art proceedings Dagstuhl Seminar on Sci-
entific Visualization, pages 363 – 376.
Lachaud, J. and Montanvert, A. (2000). Continuous analogs
of digital boundaries: A topological approach to iso-
surfaces. Graphical Models, 62:129 – 164.
Latecki, L. (1997). 3D Well-Composed Pictures. Graphical
Models and Image Processing, 59(3):164–172.
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3D surface construction algorithm.
ACM Computer Graphics, 21(4):163–169.
Mantyla, M. (1988). An Introduction to Solid Modeling.
Computer Science Press.
Mart´ın-Badosa, E., Elmoutaouakkil, A., Nuzzo, S., Am-
blard, D., Vico, L., and Peyrin, F. (2003). A method
for the automatic characterization of bone architecture
in 3D mice microtomographic images. Computerized
Medical Imaging and Graphics, 27:447–458.
Massey, W. S. (1991). A Basic Course in Algebraic Topol-
ogy. Springer-Verlag.
Odgaard, A. and Gundersen, H. J. (1993). Quantification of
Connectivity in Cancellous Bone, with Special Em-
phasis on 3-D Reconstructions. Bone, 14:173 – 182.
Peyrin, F., Peter, Z., Larrue, A., Bonnassie, A., and Attali,
D. (2007). Local geometrical analysis of 3D porous
network based on medial axis: Application to bone
micro-architecture microtomography images. Image
Analysis and Stereology, 26(3):179 – 185.
Pothuaud, L., Newitt, D. C., Lu, Y., MacDonald, B., and
Majumdar, S. (2004). In vivo application of 3d-line
skeleton graph analysis (lsga) technique with high-
resolution magnetic resonance imaging of trabecular
bone structure. Osteoporos Int., 15:411 – 419.
Pothuaud, L., Rietbargen, B. V., Mosekilde, L., Beuf, O.,
Levitz, P., Benhamou, C. L., and Majumdar, S. (2002).
Combination of topological param. and bone volume
fraction better predicts the mechanical properties of
trabecular bone. J. of Biomechanics, 35:1091 – 1099.
Quadros, W. R., Shimada, K., and Owen, S. J. (2004). 3d
discrete skeleton generation by wave propagation on
pr-octree for finite element mesh sizing. In Proc.
ACMSymposium on Solid Modeling and Applications,
pages 327 – 332.
Requicha, A. (1980). Representations for rigid solids: The-
ory, methods and systems. ACM Computing Surveys,
12(4):73–82.
Rodr´ıguez, J. and Ayala, D. (2003). Fast neighborhood op-
erations for images and volume data sets. Computers
& Graphics, 27:931–942.
Rodr´ıguez, J., Ayala, D., and Aguilera, A. (2004). Geo-
metric Modeling for Scientific Visualization, chapter
EVM: A Complete Solid Model for Surface Render-
ing, pages 259–274. Springer Verlag.
Rosenfeld, A., Kong, T. Y., and Nakamura, A. (1998).
Topology-preserving deformations of two valued digi-
tal pictures. Graphical Models and Image Processing,
60(1):24 – 34.
Rossignac, J. and Cardoze, D. (1999). Matchmaker: man-
ifold BReps for non-manifold r-sets. In Proc. Fifth
Symposium on Solid Modeling, pages 31 – 40.
Rossignac, J. R. and Requicha, A. A. G. (1991). Contructive
Non-Regularized Geometry. Computer-aided design,
23(1):21 – 32.
Rossignac, J. R. and Requicha, A. G. (1986). Offsetting
operations in solid modeling. Computer Aided Geo-
metric Design, 3:129 – 148.
Samet, H. (1990). Applications of spatial data structures.
Computer Graphics, Image Processing and GIS.
Sarioz, D., Herman, G., and Kong, T. Y. (2004). A technol-
ogy for retrieval of volume images from biomedical
databases*. In Proc. 30th IEEE/EMB Annual North-
east Bioengineering Conference, pages 67–68.
Schaefer, S., Ju, T., and Warren, J. (2007). Manifold dual
contouring. IEEE Transactions on Visualization and
Computer Graphics, 13(3):610 – 619.
Stauber, M. and M¨uller, R. (2006). Volumetric spatial de-
composition of trabecular bone into rods and plates:
A new method for local bone morphometry. Bone,
38(4):475–484.
Tang, K. and Woo, T. (1991). Algorithmic aspects of al-
ternating sum of volumes. Part 1: Data structure and
difference operation. CAD, 23(5):357 – 366.
Thurfjell, L., Bengtsson, E., and Nordin, B. (1995). A
boundary approach to fast neighborhood operations
on three-dimensional binary data. CVGIP: Graphical
Models and Image Processing, 57(1):13 – 19.
Toriwaki, J. and Yonekura, T. (2002). Euler number and
connectivity indexes of a three dimensional digital
picture. Forma, 17:183–209.
Vanderhyde, J. and Szymczak, A. (2008). Topological sim-
plification of isosurfaces in volume data using octrees.
Graphical Models, 70:16 – 31.
Verg´es, E., Ayala, D., Grau, S., and Tost, D. (2008). Vir-
tual porosimeter. Computer-Aided Design and Appli-
cations, 5(1-4):557–564.
Vogel, H. J., T¨olke, J., Schulz, V. P., Krafczyk, M., and
Roth, K. (2005). Comparison of a lattice-boltzmann
model, a full-morphology model, and a pore network
model for determining capillary pressure-saturation
relationships. Vadose Zone Journal, 4:380 –388.
A POLYHEDRAL APPROACH TO COMPUTE THE GENUS OF A VOLUME DATASET
47