GPU ACCELERATED REAL-TIME OBJECT DETECTION ON HIGH RESOLUTION VIDEOS USING MODIFIED CENSUS TRANSFORM

Salih Cihan Tek, Muhittin Gökmen

2012

Abstract

This paper presents a novel GPU accelerated object detection system using CUDA. Because of its detection accuracy, speed and robustness to illumination variations, a boosting based approach with Modified Census Transform features is used. Results are given on the face detection problem for evaluation. Results show that even our single-GPU implementation can run in real-time on high resolution video streams without sacrificing accuracy and outperforms the single-threaded and multi-threaded CPU implementations for resolutions ranging from 640×480 to 1920×1080 by a factor of 12-18x and 4-6x, respectively.

References

  1. Fröba, B. and Ernst, A. (2004). Face detection with the modified census transform. In Proceedings of the Sixth IEEE international conference on Automatic face and gesture recognition, FGR' 04, pages 91-96, Washington, DC, USA. IEEE Computer Society.
  2. Harvey, J. P. (2009). Gpu acceleration of object classification algorithms using nvidia cuda. Master's thesis, Rochester Institute of Technology.
  3. Hefenbrock, D., Oberg, J., Thanh, N. T. N., Kastner, R., and Baden, S. B. (2010). Accelerating viola-jones face detection to fpga-level using gpus. In Proceedings of the 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 7810, pages 11-18, Washington, DC, USA. IEEE Computer Society.
  4. Herout, A., Joth, R., Jurnek, R., Havel, J., Hradi, M., and Zemk, P. (2010). Real-time object detection on cuda. Journal of Real-Time Image Processing, 2010(1):1- 12.
  5. Obukhov, A. (2004). Haar classifiers for object detection with cuda. In Fernando, R., editor, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, chapter 33, pages 517-544. Addison Wesley.
  6. Rowley, H., Baluja, S., and Kanade, T. (1998). Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(1):23-38.
  7. Sharma, B., Thota, R., Vydyanathan, N., and Kale, A. (2009). Towards a robust, real-time face processing system using cuda-enabled gpus. In High Performance Computing (HiPC), 2009 International Conference on, page 368377. IEEE.
  8. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vision, 57:137-154.
  9. nd350
  10. ce300
  11. re250
  12. se200
  13. am150
  14. F100
Download


Paper Citation


in Harvard Style

Cihan Tek S. and Gökmen M. (2012). GPU ACCELERATED REAL-TIME OBJECT DETECTION ON HIGH RESOLUTION VIDEOS USING MODIFIED CENSUS TRANSFORM . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 685-688. DOI: 10.5220/0003821606850688


in Bibtex Style

@conference{visapp12,
author={Salih Cihan Tek and Muhittin Gökmen},
title={GPU ACCELERATED REAL-TIME OBJECT DETECTION ON HIGH RESOLUTION VIDEOS USING MODIFIED CENSUS TRANSFORM},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={685-688},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003821606850688},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - GPU ACCELERATED REAL-TIME OBJECT DETECTION ON HIGH RESOLUTION VIDEOS USING MODIFIED CENSUS TRANSFORM
SN - 978-989-8565-03-7
AU - Cihan Tek S.
AU - Gökmen M.
PY - 2012
SP - 685
EP - 688
DO - 10.5220/0003821606850688