Holtzman-Gazit, M., Kimmel, R., Peled, N., and Goldsher,
D. (2006). Segmentation of thin structures in volu-
metric medical images. IEEE Transacions on Image
Processing, 15(2):354–363.
Kass, M., Witkin, A. P., and Terzopoulos, D. (1988).
Snakes: Active contour models. International Jour-
nal of Computer Vision, 1(4):321–331.
Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A.,
and Yezzi, A. J. (1995). Gradient flows and geometric
active contour models. In ICCV, pages 810–815.
Lecellier, F., Jehan-Besson, S., Fadili, J., Aubert, G., and
Revenu, M. (2009). Optimization of divergences
within the exponential family for image segmentation.
In SSVM, pages 137–149.
Leventon, M. E., Grimson, W. E., and Faugeras, O. (2000).
Statistical shape influence in geodesic active contours.
In Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 316–323.
Li, C., Xu, C., Gui, C., and Fox, M. D. (2005). Level set
evolution without re-initialization: A new variational
formulation. In Computer Vision and Pattern Recog-
nition.
Mansouri, A. and Mitiche, A. (2002). Region tracking via
local statistics and level set pdes. In IEEE Interna-
tional Conference on Image Processing, volume III,
pages 605–608, Rochester, NY, USA.
Mansouri, A., Mitiche, A., and Vazquez, C. (2006). Mul-
tiregion competition: A level set extension of region
competition to multiple region partioning. Computer
Vision and Image Understanding, 101(3):137–150.
Martin, D., Fowlkes, C., and Malik, J. (2004). Learn-
ing to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
26(5):530–549.
Michailovich, O. V., Rathi, Y., and Tannenbaum, A. (2007).
Image segmentation using active contours driven by
the Bhattacharyya gradient flow. IEEE Transactions
on Image Processing, 16(11):2787–2801.
Mitiche, A. and Ayed, I. B. (2010). Variational and Level
Set Methods in Image Segmentation. Springer, 1st edi-
tion.
Mortensen, F. N. (2008). Progress in Autonomous Robot
Research. Nova Science Publishers.
Myronenko, A. and Song, X. B. (2009). Global ac-
tive contour-based image segmentation via probability
alignment. In CVPR, pages 2798–2804.
Paragios, N. and Deriche, R. (2002). Geodesic active re-
gions and level set methods for supervised texture seg-
mentation. International Journal of Computer Vision,
46(3):223–247.
Paragios, N., Mellina-Gottardo, O., and Ramesh, V. (2004).
Gradient vector flow fast geometric active contours.
IEEE Transactions on Pattern Analalysis and Ma-
chine Intelligence, 26(3):402–407.
Paragios, N., Rousson, M., and Ramesh, V. (2002). Match-
ing distance functions: A shape to area variational ap-
proach for global to local registration. In European
Conference in Computer Vision (ECCV), pages 775–
790.
Rousson, M. and Cremers, D. (2005). Efficient kernel den-
sity estimation of shape and intensity priors for level
set segmentation. In MICCAI, pages 757–764.
Salah, M. B., Mitiche, A., and Ayed, I. B. (2010). Effective
level set image segmentation with a kernel induced
data term. IEEE Transactions on Image Processing,
19(1):220–232.
Samson, C., Blanc-Feraud, L., Aubert, G., and Zerubia, J.
(2000). A level set model for image classification. In-
ternational Journal of Computer Vision, 40(3):187–
197.
Sethian, J. A. (1999). Level set Methods and Fast Marching
Methods. Cambridge University Press.
Vazquez, C., Mitiche, A., and Laganiere, R. (2006). Joint
segmentation and parametric estimation of image mo-
tion by curve evolution and level sets. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
28(5):782–793.
Zhu, S. C. (2003). Statistical modeling and conceptualiza-
tion of visual patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(6):691–712.
Zhu, S. C. and Yuille, A. (1996). Region competition:
Unifying snakes, region growing, and Bayes/MDL
for multiband image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
118(9):884–900.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
248