REFERENCES
Balestrassi, P., Popova, E., Paiva, A., and Marangon-Lima,
J. (2009). Design of experiments on neural network’s
training for nonlinear time series forecasting. Neuro-
computing, 72:1160–1178.
Banerjee, S., Al-Qaheri, H., and Hassanien, A. E. (2010).
Mining social networks for viral marketing using
fuzzy logic. In Mathematical/Analytical Modelling
and Computer Simulation (AMS), 2010 Fourth Asia
International Conference on, pages 24 –28.
Castillo, C., Mendoza, M., and Poblete, B. (2011). Informa-
tion credibility on twitter. In Proceedings of the 20th
international conference on World wide web, WWW
’11, pages 675–684, New York, NY, USA. ACM.
Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002).
Maintaining stream statistics over sliding windows:
(extended abstract). In Proceedings of the thir-
teenth annual ACM-SIAM symposium on Discrete al-
gorithms, SODA ’02, pages 635–644, Philadelphia,
PA, USA. Society for Industrial and Applied Math-
ematics.
Domingos, P. (2005). Mining social networks for viral mar-
keting. IEEE Intelligent Systems, 20(1):80–82.
Guha, S., Koudas, N., and Shim, K. (2006). Approximation
and streaming algorithms for histogram construction
problems. ACM Trans. Database Syst., 31:396–438.
Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2:359–366.
Lee, C.-H., Wu, C.-H., and Chien, T.-F. (2011). BursT:
A dynamic term weighting scheme for mining mi-
croblogging messages. In Liu, D., Zhang, H., Polycar-
pou, M., Alippi, C., and He, H., editors, Advances in
Neural Networks ISNN 2011, volume 6677 of Lecture
Notes in Computer Science, pages 548–557. Springer
Berlin / Heidelberg.
Lee, L. K. and Ting, H. F. (2006). Maintaining significant
stream statistics over sliding windows. In Proceedings
of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, SODA ’06, pages 724–732, New
York, NY, USA. ACM.
Mathioudakis, M. and Koudas, N. (2010). Twittermonitor:
trend detection over the twitter stream. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, pages 1155–1158, New York,
NY, USA. ACM.
Mendoza, M., Poblete, B., and Castillo, C. (2010). Twitter
under crisis: can we trust what we rt? In Proceed-
ings of the First Workshop on Social Media Analytics,
SOMA ’10, pages 71–79, New York, NY, USA. ACM.
Pan, B., Demiryurek, U., Banaei-Kashani, F., and Shahabi,
C. (2010). Spatiotemporal summarization of traffic
data streams. In Proceedings of the ACM SIGSPATIAL
International Workshop on GeoStreaming, IWGS ’10,
pages 4–10, New York, NY, USA. ACM.
Petrovic, S., Osborne, M., and Lavrenko, V. (2010). Stream-
ing first story detection with application to twitter.
In HLT-NAACL, pages 181–189. The Association for
Computational Linguistics.
Rumelhart, D., Hinton, G., and William, R. (1986). Learn-
ing internal representation by back-propagation er-
rors. Nature, 323:533–536.
Zhu, Y. and Shasha, D. (2002). Statstream: Statistical mon-
itoring of thousands of data streams in real time. In
VLDB, pages 358–369. Morgan Kaufmann.
STREAM VOLUME PREDICTION IN TWITTER WITH ARTIFICIAL NEURAL NETWORKS
493