REFERENCES
Ankerst, M., Berchtold, S., and Keim, D. A. (1998). Sim-
ilarity clustering of dimensions for an enhanced visu-
alization of multidimensional data. In INFOVIS ’98:
Proceedings of the 1998 IEEE Symposium on Infor-
mation Visualization, pages 52–60, Washington, DC,
USA. IEEE Computer Society.
Artero, A. O., de Oliveira, M. C. F., and Levkowitz, H.
(2004). Uncovering clusters in crowded parallel co-
ordinates visualizations. In Proceedings of the IEEE
Symposium on Information Visualization, pages 81–
88, Washington, DC, USA. IEEE Computer Society.
Bein, K., Zhao, Y., and Wexler, A. (2009). Conditional sam-
pling for source-oriented toxicological studies using a
single particle mass spectrometer. Environmental Sci-
ience and Technology, 43(24):9445–9452.
Ellis, G. and Dix, A. (2007). A taxonomy of clutter re-
duction for information visualisation. IEEE Trans-
actions on Visualization and Computer Graphics,
13(6):1216–1223.
Elmqvist, N., Dragicevic, P., and Fekete, J.-D. (2008).
Rolling the dice: Multidimensional visual exploration
using scatterplot matrix navigation. IEEE Trans-
actions on Visualization and Computer Graphics,
14:1141–1148.
Engel, D., Rosenbaum, R., Hamann, B., and Hagen, H.
(2011). Structural decomposition trees. Computer
Graphics Forum, 30(3):921–930.
Hauser, H., Ledermann, F., and Doleisch, H. (2002). An-
gular brushing of extended parallel coordinates. In
INFOVIS ’02: Proceedings of the IEEE Symposium
on Information Visualization (InfoVis’02), pages 127–
130, Washington, DC, USA. IEEE Computer Society.
Hoffman, P., Grinstein, G., and Pinkney, D. (1999). Di-
mensional anchors: a graphic primitive for multidi-
mensional multivariate information visualizations. In
NPIVM ’99: Proceedings of the 1999 workshop on
new paradigms in information visualization and ma-
nipulation, pages 9–16, New York, NY, USA. ACM.
Ingram, S., Munzner, T., and Olano, M. (2009). Glimmer:
Multilevel mds on the gpu. IEEE Transactions on Vi-
sualization and Computer Graphics, 15:249–261.
Jänicke, H., Böttinger, M., and Scheuermann, G. (2008).
Brushing of attribute clouds for the visualization of
multivariate data. IEEE Transactions on Visualization
and Computer Graphics, 14:1459–1466.
Johansson, J., Ljung, P., Jern, M., and Cooper, M. (2005).
Revealing structure within clustered parallel coordi-
nates displays. In Proceedings of the Proceedings of
the 2005 IEEE Symposium on Information Visualiza-
tion, pages 125–132, Washington, DC, USA. IEEE
Computer Society.
Johansson, S. and Johansson, J. (2009). Interactive dimen-
sionality reduction through user-defined combinations
of quality metrics. IEEE Transactions on Visualiza-
tion and Computer Graphics, 15:993–1000.
Kandogan, E. (2001). Visualizing multi-dimensional clus-
ters, trends, and outliers using star coordinates. In
Proceedings of the ACM international conference on
Knowledge discovery and data mining, pages 107–
116, New York, NY, USA. ACM.
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
Computer Graphics, 21(4):163–169.
McDonnell, K. T. and Mueller, K. (2008). Illustrative
parallel coordinates. Computer Graphics Forum,
27(3):1031–1038.
Oesterling, P., Heine, C., Jänicke, H., and Scheuermann,
G. (2010). Visual analysis of high dimensional point
clouds using topological landscapes. In Pacific Visu-
alization Symposium (PacificVis), 2010 IEEE, pages
113 –120.
Paulovich, F. V., Oliveira, M. C. F., and Minghim, R.
(2007). The projection explorer: A flexible tool for
projection-based multidimensional visualization. In
Proceedings of the XX Brazilian Symposium on Com-
puter Graphics and Image Processing, pages 27–36,
Washington, DC, USA. IEEE Computer Society.
Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004).
Clutter reduction in Multi-Dimensional data visual-
ization using dimension reordering. In Proceedings
of the IEEE Symposium on Information Visualization,
pages 89–96, Washington, DC, USA. IEEE Computer
Society.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations.
Proceedings of the IEEE Symposium on Visual Lan-
guages, pages 336–343.
Yang, J., Patro, A., Huang, S., Mehta, N., Ward, M. O.,
and Rundensteiner, E. A. (2004). Value and relation
display for interactive exploration of high dimensional
datasets. In Proceedings of the IEEE Symposium on
Information Visualization, pages 73–80, Washington,
DC, USA. IEEE Computer Society.
Yang, J., Peng, W., Ward, M. O., and Rundensteiner, E. A.
(2003a). Interactive hierarchical dimension ordering,
spacing and filtering for exploration of high dimen-
sional datasets. In Proceedings of the Ninth annual
IEEE conference on Information visualization, pages
105–112, Washington, DC, USA. IEEE Computer So-
ciety.
Yang, J., Ward, M. O., Rundensteiner, E. A., and Huang, S.
(2003b). Visual hierarchical dimension reduction for
exploration of high dimensional datasets. In Proceed-
ings of the symposium on Data visualisation 2003,
VISSYM ’03, pages 19–28, Aire-la-Ville, Switzer-
land, Switzerland. Eurographics Association.
Yang, J., Ward, M. O., Rundensteiner, E. A., and Huang, S.
(2003c). Visual hierarchical dimension reduction for
exploration of high dimensional datasets. In Proceed-
ings of the Symposium on Data visualisation 2003,
VISSYM ’03, pages 19–28, Aire-la-Ville, Switzer-
land, Switzerland. Eurographics Association.
Yuan, X., Guo, P., Xiao, H., Zhou, H., and Qu, H.
(2009). Scattering points in parallel coordinates. IEEE
Transactions on Visualization and Computer Graph-
ics, 15:1001–1008.
Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008).
Visual Clustering in Parallel Coordinates. Computer
Graphics Forum, 27(3):1047–1054.
INTERPRETATION, INTERACTION, AND SCALABILITY FOR STRUCTURAL DECOMPOSITION TREES
647