have not tackled yet, and the amount of data available
represents a huge potential for future research, both,
in visualization and in the medical domain.
ACKNOWLEDGEMENTS
The authors thank St. Thomas Hospital for data and
Zoltan Konyha for converting the data first time. Part
of this work was done in the scope of the K1 program
at the VRVis Research Center (http://www.VRVis.at).
REFERENCES
Aigner, W., Miksch, S., M
¨
uller, W., Schumann, H., and
Tominski, C. (2007a). Visual methods for analyzing
time-oriented data. IEEE Transactions on Visualiza-
tion and Computer Graphics, pages 47–60.
Aigner, W., Miksch, S., M
¨
uller, W., Schumann, H., and
Tominski, C. (2007b). Visualizing time-oriented
data–A systematic view. Computers & Graphics,
31(3):401–409.
Aris, A., Shneiderman, B., Plaisant, C., Shmueli, G.,
and Jank, W. (2005). Representing unevenly-spaced
time series data for visualization and interactive ex-
ploration. Human-Computer Interaction-INTERACT
2005, pages 835–846.
Bade, R., Schlechtweg, S., and Miksch, S. (2004). Con-
necting time-oriented data and information to a co-
herent interactive visualization. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 105–112. ACM.
Gan, H., Matkovic, K., Ammer, A., Purgathofer, W., Ben-
nett, D., and Terblanche, M. (2011). Interactive visual
analysis of a large icu database: a novel approach to
data analysis. Critical Care, 15(Suppl 1):P135.
Gresh, D., Rabenhorst, D., Shabo, A., and Slavin, S. (2002).
Prima: A case study of using information visualiza-
tion techniques for patient record analysis. In Visual-
ization, 2002. VIS 2002. IEEE, pages 509–512. IEEE.
Hochheiser, H. and Shneiderman, B. (2002). Visual queries
for finding patterns in time series data. University of
Maryland, Computer Science Dept. Tech Report, CS-
TR-4365.
Hochheiser, H. and Shneiderman, B. (2004). Dynamic
query tools for time series data sets: timebox widgets
for interactive exploration. Information Visualization,
3(1):1–18.
Knaus, W., Wagner, D., Draper, E., Zimmerman, J.,
Bergner, M., Bastos, P., Sirio, C., Murphy, D.,
Lotring, T., and Damiano, A. (1991). The apache
iii prognostic system. risk prediction of hospital mor-
tality for critically ill hospitalized adults. Chest,
100(6):1619–36.
Knaus, W. A., Draper, E. A., Wagner, D. P., and Zimmer-
man, J. E. (1985). APACHE II: a severity of dis-
ease classification system. Critical care medicine,
13(10):818–829.
Konyha, Z., Matkovic, K., Gracanin, D., Jelovic, M., and
Hauser, H. (2006). Interactive visual analysis of fami-
lies of function graphs. IEEE Transactions on Visual-
ization and Computer Graphics, 12(6):1373.
Lindner, G., Funk, G.-C. C., Schwarz, C., Kneidinger, N.,
Kaider, A., Schneeweiss, B., Kramer, L., and Druml,
W. (2007). Hypernatremia in the critically ill is an in-
dependent risk factor for mortality. American journal
of kidney diseases : the official journal of the National
Kidney Foundation, 50(6):952–957.
McGill, R., Tukey, J. W., and Larsen, W. A. (1978). Vari-
ations of box plots. American Statistician, 32(1):12–
16.
Plaisant, C., Lam, S., Shneiderman, B., Smith, M., Rose-
man, D., Marchand, G., Gillam, M., Feied, C., Han-
dler, J., and Rappaport, H. (2008). Searching Elec-
tronic Health Records for temporal patterns in patient
histories: A case study with Microsoft Amalga. In
AMIA Annual Symposium Proceedings, volume 2008,
page 601. American Medical Informatics Association.
Plaisant, C., Milash, B., Rose, A., Widoff, S., and Shneider-
man, B. (1996). LifeLines: visualizing personal histo-
ries. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems: common ground,
pages 221–227. ACM.
Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D.,
and Shneiderman, B. (1998). LifeLines: using vi-
sualization to enhance navigation and analysis of pa-
tient records. In Proceedings of the AMIA Symposium,
page 76. American Medical Informatics Association.
Powsner, S. M. and Tufte, E. R. (1994). Graphical summary
of patient status. Lancet, 344(8919):386–389.
Roberts, J. (2007). State of the art: Coordinated & mul-
tiple views in exploratory visualization. In Coordi-
nated and Multiple Views in Exploratory Visualiza-
tion, 2007. CMV’07. Fifth International Conference
on, pages 61–71. IEEE.
Rocktaeschel, J., Morimatsu, H., Uchino, S., and Bellomo,
R. M. (2003). Unmeasured anions in critically ill pa-
tients: Can they predict mortality? Critical Care
Medicine, 31(8):2131–2136.
Shneiderman, B. (2002). The eyes have it: A task by data
type taxonomy for information visualizations. In Vi-
sual Languages, 1996. Proceedings., IEEE Sympo-
sium on, pages 336–343. IEEE.
Trobec, R., Matkovic, K., Skala, K., Depolli, M., and Av-
belj, V. (2008). Visual Analysis of Heart Reinervation
after Transplantation. In Proceedings of the MIPRO
2008.
Tukey, J. W. (1977). Exploratory data analysis. Addison
Wesley.
Wang, T., Plaisant, C., Quinn, A., Stanchak, R., Murphy, S.,
and Shneiderman, B. (2008). Aligning temporal data
by sentinel events: discovering patterns in electronic
health records. In Proceeding of the twenty-sixth an-
nual SIGCHI conference on Human factors in com-
puting systems, pages 457–466. ACM.
INTERACTIVE VISUAL ANALYSIS OF INTENSIVE CARE UNIT DATA - Relationship between Serum Sodium
Concentration, its Rate of Change and Survival Outcome
659