rectly extracted voxels to reduce measurement bias
towards the large number of background voxels in
the image. It is shown that the proposed framework
provides significantly accurate geometries with over-
all acurracies of 94.9%, 94.8%, 97.9%, 99.5%, 96.7%
and 97.0% for image datasets 1 to 6, and an average
overall accuracy of 96.8%.
REFERENCES
Abdel-Dayem, A. and El-Sakka, M. (2005). Carotid artery
ultrasound image segmentation using fuzzy region
growing. In International Conference on Image Anal-
ysis and Recognition, pages 869–878.
Antiga, L. and Ene-Iordache, B. Remuzzi, A. (2003). Com-
putational geometry for patient-specific reconstruc-
tion and meshing of blood vessels from mr and ct an-
giography. IEEE T-MI, 22(5):674–684.
Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Re-
muzzi, A., and A., S. D. (2008). An image-based mod-
eling framework for patient-specific computational
hemodynamics. Medical and Biological Engineering
and Computing, 46(11):1097–1112.
Augst, A. D., Barratt, D. C., Hughes, A. D., McG Thom,
S. A., and Xy, X. Y. (2003). Various issues re-
lating to computational fluid dynamics simulations
of carotid bifurcation flow based on models recon-
structed from three-dimensional ultrasound images.
Proc Inst Mech Eng H, Journal of Engineering in
Medicine, 217(5):393–403.
Canny, J. (1986). A computational approach to edge detec-
tion. IEEE T-PAMI, 8(6):679–698.
Cebral, J. R., Castro, M. A., Lohner, R., Burgess, J. E., Per-
golizzi, R., and Putman, C. M. (2004). Recent devel-
opments in patient-specific image-based modeling of
hemodynamics. In ENIEF04.
Cebral, J. R., Hernandez, M., and Frangi, A. F. (2003).
Computational analysis of blood flow dynamics in
cerebral aneurysms from cta and 3d rotational angiog-
raphy image data. In International Congress on Com-
putational Bioengineering, pages 191–198.
Cebral, J. R., Lohner, R., Soto, O., Choyke, P. L., and Yim,
P. J. (2001). Patient-specific simulation of carotid
artery stenting using computational fluid dynamics. In
MICCAI, pages 153–160.
Deriche, R. (1987). Using canny’s criteria to derive a re-
cursively implemented optimal edge detector. IJCV,
1(2):167–187.
Deschamps, T., Schwartz, P., Trebotich, D., Colella, P., Sa-
loner, D., and Malladi, R. (2004). Vessel segmentation
and blood flow simulation using level-sets and embed-
ded boundary methods. In Computer Assisted Radiol-
ogy and Surgery, pages 75–80.
Ding, S., Tu, J., Cheung, C., Beare, R., Phan, T., Reutens,
D., and Thien, F. (2007). Geometric model generation
for CFD simulation of blood and air flows. In Interna-
tional Conference on Bioinformatics and Biomedical
Engineering, pages 1335–1338.
Enquobahrie, A., Ibanez, L., Bullitt, E., and Aylward, S.
(2007). Vessel enhancing diffusion filter. The Insight
Journal.
Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever,
M. A. (1998). Multiscale vessel enhancement filter-
ing. In MICCAI, pages 130–137.
Gil, J. D., Ladak, H. M., Steinman, D. A., and Frenster,
A. (2000). Accuracy and variability assessment of
a semiautomatic technique for segmentation of the
carotid arteries from three-dimensional ultrasound im-
ages. Medical Physics, 27(6):1333–1342.
Giordana, S., Sherwin, S. J., Peiro, J., Doorly, D. J., Papa-
harilaou, Y., Caro, C. G., Watkins, N., Cheshire, N.,
Jackson, M., Bicknall, C., and Zervas, V. (2005). Au-
tomated classification of peripheral distal by-pass ge-
ometries reconstructed from medical data. Journal of
Biomechanics, 38(1):47–62.
Ibanez, L., Schroeder, W., Ng, L., and Cates, J. (2005). The
ITK Software Guide, 2nd Edition. Kitware, Inc.
Ladak, H. M., Milner, J. S., and Steinman, D. A. (2000).
Rapid three-dimensional segmentation of the carotid
bifurcation from serial MR images. Journal of Biome-
chanical Engineering, 122(1):96–99.
Malladi, R., Sethian, J. A., and Vemuri, B. C. (1995). Shape
modelling with front propagation: A level set ap-
proach. IEEE T-PAMI, 17(2):158–175.
Manniesing, R., Viergever, M. A., and Niessen, W. J.
(2006). Vessel enhancing diffusion: A scale space rep-
resentation of vessel structures. Medical Image Anal-
ysis, 10(6):815–825.
Mori, D. and Yamaguchi, T. (2001). Construction of the
CFD model of the aortic arch based on mr images
and simulation of the blood flow. In International
Workshop on Medical Imaging and Augmented Real-
ity, pages 111–116.
Nanduri, J. R., Pino-Romainville, F. A., and Celik, I.
(2009). CFD mesh generation for biological flows:
Geometry reconstruction using diagnostic images.
Computers & Fluids, 38(5):1026–1032.
Nilsson, B. and Heyden, A. (2003). A fast algorithm for
level set-like active contours. Pattern Recognition Let-
ters, 24(9):1311–1337.
Peiro, J., Sherwin, S. J., and Giordana, S. (2008). Automatic
reconstruction of a patient-specific high-order surface
representation and its application to mesh generation
for CFD calculations. Medical and Biological Engi-
neering and Computing, 46(11):1069–1083.
Petrou, M. and Kittler, J. (1991). Optimal edge detectors
for ramp edges. IEEE T-PAMI, 13(5):483–491.
Sekiguchi, H., Sugimoto, N., Eiho, S., Hanakawa, T., and
Urayama, S. (2005). Blood vessel segmentation for
head MRA using branch-based region growing. Sys-
tems and Computers in Japan, 36(5):80–88.
Steinman, D. A. (2002). Image-based computational fluid
dynamics modeling in realistic arterial geometries.
Annals of Biomedical Engineering, 30(4):483–497.
Steinman, D. A., Thomas, J. B., Ladak, H. M., Milner, J. S.,
Rutt, B. K., and Spence, J. D. (2002). Reconstruction
of carotid bifurcation hemodynamics and wall thick-
ness using computational fluid dynamics and mri.
Magnetic Resonance in Medicine, 47(1):149–159.
SEGMENTATION OF VESSEL GEOMETRIES FROM MEDICAL IMAGES USING GPF DEFORMABLE MODEL
331