ing potential mechanisms able to reduce such cost)
will be also explored in future developments of the
method.
REFERENCES
Bioucas-Dias, J. and Figueiredo, M. (2009). Logistic
regression via variable splitting and augmented la-
grangian tools. Technical report, Instituto Superior
Tecnico, TULisbon.
Bishop, C. M. (2007). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer, 1st edition.
B¨ohning, D. (1992). Multinomial logistic regression algo-
rithm. Annals of the Institute of Statistical Mathemat-
ics, 44:197–200.
Camps-Valls, G., Bandos, T., and Zhou, D. (2007). Semi-
supervised graph-based hyperspectral image classifi-
cation. IEEE T. Geoscience and Remote Sensing,
45(10):3044–3054.
Camps-Valls, G. and Bruzzone, L. (2005). Kernel-based
methods for hyperspectral image classification. IEEE
T. Geoscience and Remote Sensing, 43(6):1351–1362.
Camps-Valls, G., Gomez-Chova, L., Muoz-Mar, J., Vila-
Francs, J., and Calpe-Maravilla, J. (2006). Composite
kernels for hyperspectral image classification. IEEE
Geoscience and Remote Sensing Letters.
Chapelle, O., Chi, M., and Zien, A. (2006). A continuation
method for semi-supervised svms. In Proceedings of
the 23rd International Conference on Machine Learn-
ing, pages 185–192. ACM Press.
Dias, J. and Nascimento, J. M. P. (2008). Hyperspectral
subspace identification. IEEE Trans. on Geoscience
and Remote Sensing, 46(8):2435–2445.
Duda, R. O., Hart, P. E., and Stork, D. G. (200). Pattern
Classification. Wiley-Interscience, 2nd edition.
Fauvel, M., Benediktsson, J. A., Chanussot, J., and Sveins-
son, J. R. (2008). Spectral and spatial classification of
hyperspectral data using svms and morphological pro-
files. IEEE Transactions on Geoscience and Remote
Sensing, 46(11):3804–3814.
Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien,
T. G., Aronsson, M., Chippendale, B. J., Faust, J. A.,
Pavri, B. E., Chovit, C. J., Solis, M., and et al (1998).
Imaging spectroscopy and the airborne visible/ in-
frared imaging spectrometer (aviris). Remote Sensing
of Environment, 65(3):227–248.
Kittler, J. and Roli, F. (2000). Multiple classifier systems. In
In Proc. of the First Int. Workshop MCS 2000. Lecture
Notes in Computer Science, volume 1857.
Krishnapuram, B., Carin, L., Figueiredo, M., and
Hartemink, A. (2005). Sparse multinomial logistic re-
gression: Fast algorithms and generalization bounds.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(6):957968.
Krishnapuram, B., Williams, D., Xue, Y., Hartemink, A.,
Carin, L., and Figueiredo, M. (2004). On semisuper-
vised classification. In Proc. 18th Annual Conference
on Neural Information Processing Systems, Vancou-
ver, Canada.
Landgrebe, D. A. (2003). Signal Theory Methods in Multi-
spectral Remote Sensing. John Wiley, Hoboken, NJ.
Li, J., Bioucas-Dias, J., and Plaza, A. (2009). Semisu-
pervised hyperspectral image classification based on a
markov random field and sparse multinomial logistic
regression. In Proc. IEEE International Geoscience
and Remote sensing Symposium.
Li, J., Bioucas-Dias, J., and Plaza, A. (2010a). Exploiting
spatial information in semi-supervised hyperspectral
image segmentation. In IEEE GRSS Workshop on Hy-
perspectral Image and Signal Processing: Evolution
in Remote Sensing (WHISPERS10).
Li, J., Bioucas-Dias, J., and Plaza, A. (2010b). Hyper-
spectral image segmentation using a new bayesian ap-
proach with active learning. In IEEE Transactions on
Geoscience and Remote Sensing (submitted).
Li, J., Bioucas-Dias, J., and Plaza, A. (2010c). Semisuper-
vised hyperspectral image segmentation using multi-
nomial logistic regression with active learning. In
IEEE Transactions on Geoscience and Remote Sens-
ing, volume 48, page 40854098.
Mackay, D. (1992). Information-based objective functions
for active data selection. Neural Computation, 4:590–
604.
Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J.,
Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel,
M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton,
J. C., and Trianni, G. (2009). Recent advances in tech-
niques for hyperspectral image processing. Remote
Sensing of Environment, 113(110-122).
Roli, F. (2005). Semi-supervised multiple classifier sys-
tems: Background and research directions. Multiple
Classifier Systems, pages 1–11.
Tuia, D. and Camps-Valls, G. (2009). Semi-supervised hy-
perspectral image classification with cluster kernels.
IEEE Geoscience and Remote Sensing Letters.
Velasco-Forero, S. and Manian, V. (2009). Improving hy-
perspectral image classification using spatial prepro-
cessing. IEEE Geoscience and Remote Sensing Let-
ters, 6:297–301.
Xu, L., Krzyzak, A., , and Suen, C. Y. (1992). Methods for
combining multiple classifiers and their applications
to handwriting recognition. IEEE Trans. on Systems,
Man and cyb., 22:418435.
Zhu, X. (2005). Semi-supervised learning literature survey.
technical report 1530, computer sciences. Technical
report, University of Wisconsin-Madison.
A NEW MULTIPLE CLASSIFIER SYSTEM FOR SEMI-SUPERVISED ANALYSIS OF HYPERSPECTRAL IMAGES
411