Table 7: Algorithms and A*-groups. (cont.)
ASSM 2 CostRelaxAW 4
ConfSuppWin 2 RealtimeBFV 4
GeoDif 2 VariableCross 4
C-SemiGlob 2 RealtimeBP 4
IterAdaptWgt 2 CCH+SegAggr 4
RandomVote 2 AdaptPolygon 4
SO+borders 2 RealTimeGPU 4
Bipartite 2 CostRelax 4
MVSegBP 2 AdaptDomainBP 4
OverSegmBP 2 TreeDP 4
LocallyConsist 2 CSBP 4
SegmentSupport 2 DCBGrid 4
VSW 2 H-Cut 4
SegTreeDP 2 SAD-IGMCT 4
AdaptWeight 2 FLTG-DDE 4
InteriorPtLP 2 PhaseBased 4
ImproveSubPix 2 OptimizedDP 5
BP+DirectedDiff 2 TwoWin 5
SemiGlob 2 DOUS-Refine 5
RealTimeABW 2 BP+MLH 5
PlaneFitSGM 2 IMCT 5
2OP+occ 2 PhaseDiff 5
VarMSOH 2 BioPsyASW 6
Unsupervised 2 DP 6
SNCC 2 DPVI 6
StereoSONN 2 2DPOC 6
RealtimeVar 2 RegionalSup 6
GenModel 2 SSD+MF 6
RTCensus 2 SO 6
GC 2 STICA 6
GeoSup 3 Infection 6
RTAdaptWgt 3 MI-nonpara 7
CostAggr+occ 3 LCDM+AdaptWgt 7
RegionTreeDP 3 Rank+ASW 7
EnhancedBP 3
REFERENCES
Barnes, M., Shechtman, C., & Finkelstein, E., 2009.
Patchmatch: A randomized correspondence algorithm
for structural image editing. In ACM Transactions on
Graphics, 28(3). pp. 1–11.
Bleyer, M., & Chambon, S., 2010. Does Color Really
Help in Dense Stereo Matching?. In Proceedings of
the International Symposium 3D Data Processing,
Visualization and Transmission, pp. 1–8.
Bleyer M. & Gelautz M. 2004. A layered stereo algorithm
using image segmentation and global visibility
constraints. In Proceedings International Conference
Image Processing. IEEE Computer Society pp. 2997–
3000.
Bleyer, M., Rhemann, C., & Rother, C., 2011. PatchMatch
Stereo - Stereo Matching with Slanted Support
Windows. In Proceedings of the British Machine
Vision Conference, pp. 1–11.
Cabezas, I., Padilla V., & Trujillo, M., 2011. A measure
for accuracy disparity maps evaluation. In
Proceedings of the Iberoamerican Congress on
Pattern Recognition. Springer-Verlag, pp. 223–231.
Cabezas, I., & Trujillo, M., 2011. A Non-Linear
Quantitative Evaluation Approach for Disparity
Estimation. In Proceedings of the International
Conference on Computer Vision, Theory and
Applications, pp. 704–709.
Felzenszwalb, P., & Huttenlocher, D., 2004. Efficient
belief propagation for early vision. In Proceedings of
Computer Vision and Pattern Recognition. IEEE
Computer Society, pp. 261–268.
Gallup, D., Frahm, J., Mordohai, & P., Pollefeys, M.,
2008. Variable Baseline/Resolution Stereo. In
Proceedings of Computer Vision and Pattern
Recognition, IEEE Computer Society, pp. 1–8.
Hirschmüller, H., & Scharstein, D., 2009. Evaluation of
Stereo Matching Costs on Images with Radiometric
Differences. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(9). IEEE Computer
Society, pp. 1582–1599.
Kelly, P., O’Connor N., & Smeaton A., 2007. A
Framework for Evaluating Stereo-Based Pedestrian
Detection Techniques. In IEEE Transactions Circuits
and Systems for Video Technology, 18(8). IEEE
Computer Society. IEEE, pp. 1163–1167.
Kolmogorov, V., & Zabih, R., 2001. Computing visual
correspondence with occlusions using graph cuts. In
Proceedings of Eighth International Conference on
Computer Vision, IEEE Computer Society, pp. 508–
515.
Kolmogorov, V., & Zabih, R., 2002. Multi-camera scene
reconstruction via graph cuts. In Proceedings of
European Conference on Computer Vision, Springer
Verlag, pp. 82–96.
Kostlivá, J., Cech, J., & Sara, R., 2007. Feasibility
Boundary in Dense and Semi-Dense Stereo Matching.
In Computer Vision and Pattern Recognition. IEEE
Computer Society, pp. 1–8.
Larsen, E., Mordohai, P., Pollefeys, M., & Fuchs, H.,
2007. Temporally consistent reconstruction from
multiple video streams using enhanced belief
propagation. In International Conference on Computer
Vision. IEEE Computer Society, pp. 282–298.
Manduchi, R., & Tomasi, C., 1999. Distinctiveness maps
for image matching. In International Conference on
Image Analysis and Processing. pp. 26–31.
Neilson, D., & Yang, Y., 2008. Evaluation of
Constructable Match Cost Measures for Stereo
Correspondence using Cluster Ranking. In Computer
Vision and Pattern Recognition. IEEE Computer
Society, pp. 1–8.
Papadakis, N., & Caselles V., 2010. Multi-label Depth
Estimation for Graph Cuts Stereo Problems. In
Journal of Mathematical Imaging and Vision, 38(1).
Kluwer Academic Publishers, pp. 70–82.
Scharstein, D., & Szeliski, R., 2011. Middlebury Stereo
Evaluation - Version 2. Retrieved October 24
th
, 2011,
from: http://vision.middlebury.edu/stereo/eval/.
Scharstein, D., & Szeliski, R., 2002. A Taxonomy and
Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms. In International Journal
of Computer Vision, Volume 47, pp. 7–42.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
162