LOCAL BLUR ASSESSMENT IN NATURAL IMAGES
Loreta Adriana Suta, Mihaela Scuturici, Serge Miguet, Laure Tougne, Mircea-Florin Vaida
2012
Abstract
This paper presents a local no-reference blur assessment method in natural macro-like images. The purpose is to decide the blurriness of the object of interest. In our case, it represents the first step for a plant recognition system. Blur detection works on small non-overlapping blocks using wavelet decomposition and edge classification. At the block level the number of edges is less than on global images. A new set of rules is obtained by a supervised decision tree algorithm trained on a manually labelled base of 1500 blurred/un-blurred images. Our purpose is to achieve a qualitative decision of the blurriness/sharpness of the object of interest making it the first step towards a segmentation process. Experimental results show this method outperforms two other methods found in literature, even if applied on a block basis. Together with a pre-segmentation step, the method allows to decide if the object of interest (leaf, flower) is sharp in order to extract precise botanical key identification features (e. g. leaf border).
References
- Cerutti, G., Tougne, L., Vacavant, A., & Coquin, D. (2011). A Parametric Active Polygon for Leaf Segmentation and Shape Estimation. 7th International Symposium on Visual Computing. Las Vegas.
- Chen, M.-J., & Bovik, A. C. (2011, July). No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing.
- Hsu, P., & Chen, B. Y. (2008). Blurred image detection and classification. Proceedings of the 14th international conference on Advances in multimedia modeling (pp. 277-286). Germany: Springer.
- Joshi, N., Szeliski, R., & Kriegman, D. (2008). PSF Estimation using Sharp Edge Prediction. IEEE Conference on Computer Vision and Pattern Recognition, (CVPR) , (pp. 1 - 8). USA.
- Lim, S. H., Yen, J., & Wu, P. (2005). Detection of Out-ofFocus Digital Photographs. HP Reasearch Lab, Imaging System Laboratory.
- Moorthy, A. K., & Bovik, A. C. (2010). A Two-Stage Framework forBlind Image Quality Assessment. IEEE International Conference on Image Processing, (pp. 2481 - 2484). China.
- Narvekar, N. D., & Karam, L. J. (2011, September). A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD). IEEE Transactions on Image Processing, 20(9), 2678 - 2683 .
- Sheikh, H. R., Wang, Z., Cormack, L., & Bovik, A. C. (n.d.). LIVE Image Quality Assessment Database Release 2. Retrieved from http://live.ece.utexas.edu /research/quality
- Tong, H., Li, M., Zhang, H., & Zhang, C. (2004). Blur Detection for Digital Images Using Wavelet Transform. IEEE International Conference on Multimedia and Expo, 1, pp. 17-20.
Paper Citation
in Harvard Style
Suta L., Scuturici M., Miguet S., Tougne L. and Vaida M. (2012). LOCAL BLUR ASSESSMENT IN NATURAL IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 123-128. DOI: 10.5220/0003854001230128
in Bibtex Style
@conference{visapp12,
author={Loreta Adriana Suta and Mihaela Scuturici and Serge Miguet and Laure Tougne and Mircea-Florin Vaida},
title={LOCAL BLUR ASSESSMENT IN NATURAL IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={123-128},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003854001230128},
isbn={978-989-8565-03-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - LOCAL BLUR ASSESSMENT IN NATURAL IMAGES
SN - 978-989-8565-03-7
AU - Suta L.
AU - Scuturici M.
AU - Miguet S.
AU - Tougne L.
AU - Vaida M.
PY - 2012
SP - 123
EP - 128
DO - 10.5220/0003854001230128