LOCAL BLUR ASSESSMENT IN NATURAL IMAGES

Loreta Adriana Suta, Mihaela Scuturici, Serge Miguet, Laure Tougne, Mircea-Florin Vaida

2012

Abstract

This paper presents a local no-reference blur assessment method in natural macro-like images. The purpose is to decide the blurriness of the object of interest. In our case, it represents the first step for a plant recognition system. Blur detection works on small non-overlapping blocks using wavelet decomposition and edge classification. At the block level the number of edges is less than on global images. A new set of rules is obtained by a supervised decision tree algorithm trained on a manually labelled base of 1500 blurred/un-blurred images. Our purpose is to achieve a qualitative decision of the blurriness/sharpness of the object of interest making it the first step towards a segmentation process. Experimental results show this method outperforms two other methods found in literature, even if applied on a block basis. Together with a pre-segmentation step, the method allows to decide if the object of interest (leaf, flower) is sharp in order to extract precise botanical key identification features (e. g. leaf border).

References

  1. Cerutti, G., Tougne, L., Vacavant, A., & Coquin, D. (2011). A Parametric Active Polygon for Leaf Segmentation and Shape Estimation. 7th International Symposium on Visual Computing. Las Vegas.
  2. Chen, M.-J., & Bovik, A. C. (2011, July). No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing.
  3. Hsu, P., & Chen, B. Y. (2008). Blurred image detection and classification. Proceedings of the 14th international conference on Advances in multimedia modeling (pp. 277-286). Germany: Springer.
  4. Joshi, N., Szeliski, R., & Kriegman, D. (2008). PSF Estimation using Sharp Edge Prediction. IEEE Conference on Computer Vision and Pattern Recognition, (CVPR) , (pp. 1 - 8). USA.
  5. Lim, S. H., Yen, J., & Wu, P. (2005). Detection of Out-ofFocus Digital Photographs. HP Reasearch Lab, Imaging System Laboratory.
  6. Moorthy, A. K., & Bovik, A. C. (2010). A Two-Stage Framework forBlind Image Quality Assessment. IEEE International Conference on Image Processing, (pp. 2481 - 2484). China.
  7. Narvekar, N. D., & Karam, L. J. (2011, September). A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD). IEEE Transactions on Image Processing, 20(9), 2678 - 2683 .
  8. Sheikh, H. R., Wang, Z., Cormack, L., & Bovik, A. C. (n.d.). LIVE Image Quality Assessment Database Release 2. Retrieved from http://live.ece.utexas.edu /research/quality
  9. Tong, H., Li, M., Zhang, H., & Zhang, C. (2004). Blur Detection for Digital Images Using Wavelet Transform. IEEE International Conference on Multimedia and Expo, 1, pp. 17-20.
Download


Paper Citation


in Harvard Style

Suta L., Scuturici M., Miguet S., Tougne L. and Vaida M. (2012). LOCAL BLUR ASSESSMENT IN NATURAL IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 123-128. DOI: 10.5220/0003854001230128


in Bibtex Style

@conference{visapp12,
author={Loreta Adriana Suta and Mihaela Scuturici and Serge Miguet and Laure Tougne and Mircea-Florin Vaida},
title={LOCAL BLUR ASSESSMENT IN NATURAL IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={123-128},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003854001230128},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - LOCAL BLUR ASSESSMENT IN NATURAL IMAGES
SN - 978-989-8565-03-7
AU - Suta L.
AU - Scuturici M.
AU - Miguet S.
AU - Tougne L.
AU - Vaida M.
PY - 2012
SP - 123
EP - 128
DO - 10.5220/0003854001230128