TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION

George Siogkas, Evangelos Skodras, Evangelos Dermatas

2012

Abstract

This paper proposes the use of a monocular video camera for traffic lights detection, in a variety of conditions, including adverse weather and illumination. The system incorporates a color pre-processing module to enhance the discrimination of red and green regions in the image and handle the “blooming effect” that is often observed in such scenes. The fast radial symmetry transform is utilized for the detection of traffic light candidates and finally false positive results are minimized using spatiotemporal persistency verification. The system is qualitatively assessed in various conditions, including driving in the rain, at night and in city roads with dense traffic, as well as their synergy. It is also quantitatively assessed on a publicly available manually annotated database, scoring high detection rates.

References

  1. Barnes, N., & Zelinsky, A. (2004). Real-time radial symmetry for speed sign detection (pp. 566-571). Presented at the 2004 IEEE Intelligent Vehicles Symposium, IEEE.
  2. doi: 10.1109/IVS.2004.1336446
  3. Barnes, N., Zelinsky, A., & Fletcher, L. S. (2008). Realtime speed sign detection using the radial symmetry detector. Intelligent Transportation Systems, IEEE Transactions on, 9(2), 322-332.
  4. Chunhe Yu, Chuan Huang, & Yao Lang. (2010). Traffic light detection during day and night conditions by a camera (pp. 821-824). Presented at the 2010 IEEE 10th International Conference on Signal Processing (ICSP), IEEE. doi:10.1109/ICOSP.2010.5655934
  5. de Charette, R., & Nashashibi, F. (2009a). Real time visual traffic lights recognition based on Spot Light Detection and adaptive traffic lights templates (pp. 358-363). Presented at the 2009 IEEE Intelligent Vehicles Symposium, IEEE. doi:10.1109/IVS. 2009.5164304
  6. de Charette, R., & Nashashibi, F. (2009b). Traffic light recognition using image processing compared to learning processes (pp. 333-338). Presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, IEEE.
  7. doi:10.1109/IROS.2009.5353941
  8. Illumination, I. C. on. (1978). Recommendations on uniform color spaces, color-difference equations, psychometric color terms. Bureau central de la CIE.
  9. In-Hak, J., Seong-Ik, C., & Tae-Hyun, H. (2006). Detection of Traffic Lights for Vision-Based Car. Traffic, 4319/2006, 682-691. doi:10.1007/ 11949534_68
  10. Lindner, F., Kressel, U., & Kaelberer, S. (2004). Robust recognition of traffic signals (pp. 49- 53). Presented at the 2004 IEEE Intelligent Vehicles Symposium, IEEE.
  11. doi:10.1109/IVS.2004.1336354
  12. Loy, G., & Zelinsky, A. (2002). A fast radial symmetry transform for detecting points of interest. Computer Vision-ECCV 2002, 358-368.
  13. Loy, G., & Zelinsky, A. (2003). Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 959-973.
  14. Omachi, M., & Omachi, S. (2009). Traffic light detection with color and edge information (pp. 284-287). Presented at the 2nd IEEE International Conference on Computer Science and Information Technology, 2009. ICCSIT 2009, IEEE. doi:10.1109/ICCSIT.2009. 5234518
  15. Robotics Centre of Mines ParisTech. (2010, May 1). Traffic Lights Recognition (TLR) public benchmarks [La Route Automatisée]. Retrieved October 6, 2011, from http://www.lara.prd.fr/benchmarks/trafficlights recognition
  16. Siogkas, G. K., & Dermatas, E. S. (2006). Detection, Tracking and Classification of Road Signs in Adverse Conditions (pp. 537-540). Presented at the IEEE Mediterranean Electrotechnical Conference, MELECON 2006, Malaga, Spain. doi:10.1109/MELCON.2006.1653157
  17. Soille, P. (1999). Morphological image analysis?: principles and applications with 12 tables. Berlin [u.a.]: Springer.
  18. Yehu Shen, Ozguner, U., Redmill, K., & Jilin Liu. (2009). A robust video based traffic light detection algorithm for intelligent vehicles (pp. 521-526). Presented at the 2009 IEEE Intelligent Vehicles Symposium, IEEE.
  19. doi:10.1109/IVS.2009.5164332
Download


Paper Citation


in Harvard Style

Siogkas G., Skodras E. and Dermatas E. (2012). TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 620-627. DOI: 10.5220/0003855806200627


in Bibtex Style

@conference{visapp12,
author={George Siogkas and Evangelos Skodras and Evangelos Dermatas},
title={TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={620-627},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003855806200627},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION
SN - 978-989-8565-03-7
AU - Siogkas G.
AU - Skodras E.
AU - Dermatas E.
PY - 2012
SP - 620
EP - 627
DO - 10.5220/0003855806200627