REFERENCES
Auer, C., Sreevalsan-Nair, J., Zobel, V., and Hotz, I. (to ap-
pear 2011). 2D Tensor Field Segmentation. In Scien-
tific Visualization: Interactions, Features, Metaphors,
volume 2 of Dagstuhl Follow-Ups.
Cabral, B. and Leedom, L. C. (1993). Imaging Vector Fields
Using Line Integral Convolution. In Proc. of the 20th
annual conference on Computer graphics and inter-
active techniques, pages 263–270.
Delmarcelle, T. (1994). The Visualization of Second-order
Tensor Fields . PhD thesis, Stanford University.
Delmarcelle, T. and Hesselink, L. (1993). Visualization of
Second Order Tensor Fields and Matrix Data. IEEE
Computer Graphics & Applications, pages 25–33.
Dick, C., Georgii, J., Burgkart, R., and Westermann, R.
(2009). Stress Tensor Field Visualization for Implant
Planning in Orthopedics. IEEE Transactions on Visu-
alization and Computer Graphics, 15(6):1399–1406.
Feng, L., Hotz, I., Hamann, B., and Joy, K. (2008).
Anisotropic Noise Samples. IEEE Transactions on Vi-
sualization and Computer Graphics, 14(2):342–354.
Hashash, Y. M. A., Yao, J. I.-C., and Wotring, D. C.
(2003). Glyph and Hyperstreamline Representation
of Stress and Strain Tensors and Material Constitutive
Response. Int. Journal for Numerical and Analytical
Methods in Geomechanics, 27(7):603–626.
Hesselink, L., Levy, Y., and Lavin, Y. (1997). The Topology
of Symmetric, Second-Order 3D Tensor Fields. IEEE
Transactions on Visualization and Computer Graph-
ics, 3(1):1–11.
Hlawitschka, M., Scheuermann, G., and Hamann, B.
(2007). Interactive Glyph Placement for Tensor
Fields. In ISVC (1), pages 331–340.
Hotz, I., Feng, L., Hagen, H., Hamann, B., Jeremic, B., and
Joy, K. (2004). Physically Based Methods for Tensor
Field Visualization. In Proc. of IEEE Visualization
(Vis’04), pages 123–130.
Hummel, M., Garth, C., Hamann, B., Hagen, H., and Joy,
K. I. (2010). IRIS: Illustrative Rendering for Inte-
gral Surfaces. IEEE Transactions on Visualization and
Computer Graphics, 16:1319–1328.
Kindlmann, G. and Westin, C.-F. (2006). Diffusion Ten-
sor Visualization with Glyph Packing. IEEE Trans-
actions on Visualization and Computer Graphics,
12(5):1329–1336.
Kratz, A., Kettlitz, N., and Hotz, I. (2011). Particle-Based
Anisotropic Sampling for Two-Dimensional Tensor
Field Visualization. In Vision Modeling and Visual-
ization (VMV’11), pages 145–152.
Lavin, Y., Batra, R., Hesselink, L., and Levy, Y. (1997). The
Topology of Symmetric Tensor Fields. AIAA Compu-
tational Fluid Dynamics Conference,, page 2084.
Rustamov, R. M., Lipman, Y., and Funkhouser, T. (2009).
Interior Distance Using Barycentric Coordinates. In
Proc. of the Symposium on Geometry Processing
(SGP ’09), pages 1279–1288.
Schultz, T. and Kindlmann, G. (2010). Superquadric
Glyphs for Symmetric Second-Order Tensors. IEEE
Transactions on Visualization and Computer Graph-
ics, 16:1595–1604.
Sreevalsan-Nair, J., Auer, C., Hamann, B., and Hotz, I.
(2010). Eigenvector-based Interpolation and Segmen-
tation of 2D Tensor Fields. In Topological Methods
in Visualization. Theory, Algorithms, and Applications
(TopoInVis 2009).
Tricoche, X., Kindlmann, G. L., and Westin, C.-F. (2008).
Invariant Crease Lines for Topological and Structural
Analysis of Tensor Fields. IEEE Transactions on Visu-
alization and Computer Graphics, 14(6):1627–1634.
Tricoche, X., Scheuermann, G., Hagen, H., and Clauss, S.
(2001). Vector and Tensor Field Topology Simplifica-
tion on Irregular Grids. In Proceedings of the Sympo-
sium on Data Visualization (VisSym ’01), pages 107–
116.
Zheng, X. and Pang, A. (2003). HyperLIC. In Proc. of
IEEE Visualization (Vis’03), pages 249–256.
Zheng, X. and Pang, A. (2004). Topological Lines in 3D
Tensor Fields. In Proc. of IEEE Visualization (Vis’04).
GLYPH- AND TEXTURE-BASED VISUALIZATION OF SEGMENTED TENSOR FIELDS
677