ROBUST DEFORMABLE MODEL FOR SEGMENTING THE LEFT VENTRICLE IN 3D VOLUMES OF ULTRASOUND DATA

Carlos Santiago, Jorge S. Marques, Jacinto Nascimento

2012

Abstract

The segmentation of the left ventricle (LV) in echocardiographic data has proven itself a useful methodology to assess cardiac function and to detect abnormalities. Traditionally, cardiologists segment the LV border at the end-systolic and end-diastolic phases to determine the ejection fraction. However, the manual segmentation of the LV is a tedious and time demanding task, which means automated segmentation systems can provide a powerful tool to improve workflow in a clinical setup. This paper proposes a robust 3D segmentation system consisting of a deformable model that uses a probabilistic data association filter (PDAF) to robustly detect the LV border. Results show that the algorithm performs well in both synthetic and real data, without significantly compromising its performance. The obtained LV segmentations are compared with the manual segmentations performed by an expert, yielding an average distance of 4 pixel between points from both segmentations.

References

  1. Bar-Shalom, Y. and Fortmann, T. (1988). Tracking and Data Associaton. New York: Academic.
  2. Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469-483.
  3. Blake, A. and Isard, M. (1998). Active Contour. Springer.
  4. Chan, K.-L. and Veinot, J. P. (2011). Anatomic Basis of Echocardiographic Diagnosis. Oxford Univesity Press, 1st edition.
  5. Delingette, H. (1999). General object reconstruction based on simplex mesh. International Journal of Computer Vision, (32):111-142.
  6. Hammoude, A. (1988). Computer-assisted Endocardial Border Identification from a Sequence of Twodimensional Echocardiographic Images. PhD, University Washington.
  7. Hang, X., Greenberg, N., and Thomas, J. (2005). Left ventricle quantification in 3d echocardiography using a geometric deformable model. Computers in Cardiology, pages 649-652.
  8. Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J. (1993). Comparing images using hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell., 15(9):850-863.
  9. Juang, R., McVeigh, E., Hoffmann, B., Yuh, D., and Burlina, P. (2011). Automatic segmentation of the left-ventricular cavity and atrium in 3d ultrasound using graph cuts and the radial symmetry transform. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 606-609.
  10. Kutulakos, K. N. and Seitz, S. M. (2000). A theory of shape by space carving. International Journal of Computer Vision, (38):199-218.
  11. Nascimento, J. C. and Marques, J. S. (2004). Robust shape tracking in the presence of cluttered background. IEEE Trans. Multimedia, 6(6).
  12. Nillesen, M., Lopata, R., and et al. (2006). 3d segmentation of the heart muscle in real-time 3d echocardiographic sequences using image statistics. IEEE Ultrasonics Symposium, 2006, pages 1987-1990.
  13. Orderud, F. (2010). Real-time segmentation of 3D echocardiograms using a state estimation approach with deformable models. PhD thesis, Norwegian University of Science and Technology, Department of Computer and Information Science.
  14. Scowen, B., Smith, S., and Vannan, M. (2000). Quantitative 3d modelling of the left ventrical from ultrasound images. In Euromicro Conference, volume 2, pages 432-439.
  15. Yang, L., Georgescu, B., Zheng, Y., Meer, P., and Comaniciu, D. (2008). 3d ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In IEEE CVPRW'08, pages 1-8.
  16. Yu, H., Pattichis, M., and Goens, M. (2006). Robust segmentation and volumetric registration in a multi-view 3d freehand ultrasound reconstruction system. In ACSSC 7806, pages 1058-6393.
Download


Paper Citation


in Harvard Style

Santiago C., S. Marques J. and Nascimento J. (2012). ROBUST DEFORMABLE MODEL FOR SEGMENTING THE LEFT VENTRICLE IN 3D VOLUMES OF ULTRASOUND DATA . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: SADM, (ICPRAM 2012) ISBN 978-989-8425-98-0, pages 333-340. DOI: 10.5220/0003858403330340


in Bibtex Style

@conference{sadm12,
author={Carlos Santiago and Jorge S. Marques and Jacinto Nascimento},
title={ROBUST DEFORMABLE MODEL FOR SEGMENTING THE LEFT VENTRICLE IN 3D VOLUMES OF ULTRASOUND DATA},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: SADM, (ICPRAM 2012)},
year={2012},
pages={333-340},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003858403330340},
isbn={978-989-8425-98-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: SADM, (ICPRAM 2012)
TI - ROBUST DEFORMABLE MODEL FOR SEGMENTING THE LEFT VENTRICLE IN 3D VOLUMES OF ULTRASOUND DATA
SN - 978-989-8425-98-0
AU - Santiago C.
AU - S. Marques J.
AU - Nascimento J.
PY - 2012
SP - 333
EP - 340
DO - 10.5220/0003858403330340