MUSIC GENRE CLASSIFICATION BASED ON DYNAMICAL MODELS

Alberto García-Durán, Jerónimo Arenas-García, Darío García-García, Emilio Parrado-Hernández

2012

Abstract

This paper studies several alternatives to extract dynamical features from hidden Markov Models (HMMs) that are meaningful for music genre supervised classification. Songs are modelled using a three scale approach: a first stage of short term (milliseconds) features, followed by two layers of dynamical models: a multivariate AR that provides mid term (seconds) features for each song followed by an HMM stage that captures long term (song) features shared among similar songs. We study from an empirical point of view which features are relevant for the genre classification task. Experiments on a database including pieces of heavy metal, punk, classical and reggae music illustrate the advantages of each set of features.

References

  1. Arenas-García, J., Parrado-Hernández, E., Meng, A., Hansen, L.-K., and Larsen, J. (2007). Discovering music structure via similarity fusion. In Music, Brain and Cognition Workshop, NIPS'07.
  2. Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math Soc.
  3. Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, COLT 7892, pages 144-152.
  4. Fu, Z., Lu, G., Ting, K. M., and Zhang, D. (2011). Music classification via the bag-of-features approach. Pattern Recognition Letters, 32(14):1768(10).
  5. García-García, D., Arenas-García, J., Parrado-Hernández, E., and de Maria F, D. (2010). Music genre classification using the temporal structure of songs. In Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, pages 266 -271.
  6. García-García, D., Parrado-Hernández, E., and Diaz-de Maria, F. (2011). State-space dynamics distance for clustering sequential data. Pattern Recogn., 44:1014- 1022.
  7. Guaus, E. (2009). Audio content processing for automatic music genre classification: descriptors, databases, and classifiers. PhD thesis, Universitat Pompeu Fabra, Spain.
  8. Mckinney, M. and Breebaart, J. (2003). Features for audio and music classification. In Proceedings of the International Symposium on Music Information Retrieval, pages 151-158.
  9. Meng, A., Ahrendt, P., Larsen, J., and Hansen, L. (2007). Temporal feature integration for music genre classification. Audio, Speech, and Language Processing, IEEE Transactions on, 15(5):1654 -1664.
  10. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, pages 257-286.
  11. Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. J. Mach. Learn. Res., 5:101-141.
  12. Sigurdsson, S., Petersen, K. B., and Lehn-Schiler, T. (2006). Mel frequency cepstral coefficients: An evaluation of robustness of mp3 encoded music. In Proceedings of the Seventh International Conference on Music Information Retrieval (ISMIR), pages 286-289.
  13. Tzanetakis, G. and Cook, P. (2002). Musical genre classification of audio signals. Speech and Audio Processing, IEEE Transactions on, 10(5):293 - 302.
Download


Paper Citation


in Harvard Style

García-Durán A., Arenas-García J., García-García D. and Parrado-Hernández E. (2012). MUSIC GENRE CLASSIFICATION BASED ON DYNAMICAL MODELS . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 250-256. DOI: 10.5220/0003859002500256


in Bibtex Style

@conference{icpram12,
author={Alberto García-Durán and Jerónimo Arenas-García and Darío García-García and Emilio Parrado-Hernández},
title={MUSIC GENRE CLASSIFICATION BASED ON DYNAMICAL MODELS},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={250-256},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003859002500256},
isbn={978-989-8425-99-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - MUSIC GENRE CLASSIFICATION BASED ON DYNAMICAL MODELS
SN - 978-989-8425-99-7
AU - García-Durán A.
AU - Arenas-García J.
AU - García-García D.
AU - Parrado-Hernández E.
PY - 2012
SP - 250
EP - 256
DO - 10.5220/0003859002500256