PARAMETRIC DATA ASSOCIATION PRIOR FOR MULTI-TARGET TRACKING BASED ON RAO-BLACKWELLIZED MONTE CARLO DATA ASSOCIATION

Oliver Greß, Stefan Posch

2012

Abstract

Association of observations to underlying targets is a crucial task in probabilistic tracking of multiple targets. The Rao-Blackwellized Monte Carlo Data Association (RBMCDA) framework circumvents the combinatorial explosion by approximating the joint distribution of targets and association variables by Monte Carlo samples in the space of association variables. We present a parametric data association prior distribution required by RBMCDA, which models the formation of observations. To sample from this distribution an efficient algorithm is developed. The Interacting Multiple Models (IMM) filter is integrated into the RBMCDA framework to model the changing dynamics of targets aiming at tracking small particles in microscopy images. The proposed method is evaluated in a proof of concept and evaluated using synthetic data.

References

  1. Bar-Shalom, Y. and Blair, W. (2000). Multitargetmultisensor tracking: Applications and advances. Vol III. Artech House.
  2. Bar-Shalom, Y. and Fortmann, T. (1987). Tracking and data association. Academic Press Professional.
  3. Blom, H. and Bloem, E. (2003). Joint IMMPDA particle filter. In Information Fusion, Proc 6th International Conference.
  4. Doucet, A., de Freitas, N., and Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo methods in practice, pages 3-14.
  5. Genovesio, A. and Olivo-Marin, J. (2008). Particle tracking in 3D+t biological imaging. In Rittscher, J., editor, Microscopic Image Analysis for Life Science Applications, pages 223-282. Artech House.
  6. Hue, C., Le Cadre, J., and Pérez, P. (2002). Sequential monte carlo methods for multiple target tracking and data fusion. Signal Processing, IEEE Trans, 50(2):309-325.
  7. Khan, Z., Balch, T., and Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable number of interacting targets. Pattern Analysis and Machine Intelligence, IEEE Trans, 27:2005.
  8. Musicki, D. and Evans, R. (2002). Joint integrated probabilistic data association-JIPDA. In Information Fusion, 2002. Proc 5th International Conference, volume 2, pages 1120-1125. IEEE.
  9. Reid, D. (1979). An algorithm for tracking multiple targets. Automatic Control, IEEE Trans, 24(6):843-854.
  10. Särkkä, S., Vehtari, A., and Lampinen, J. (2007). Raoblackwellized particle filter for multiple target tracking. Information Fusion, 8(1):2-15.
  11. Smal, I. et al. (2008). Multiple object tracking in molecular bioimaging by rao-blackwellized marginal particle filtering. Medical image analysis, 12(6):764-777.
Download


Paper Citation


in Harvard Style

Greß O. and Posch S. (2012). PARAMETRIC DATA ASSOCIATION PRIOR FOR MULTI-TARGET TRACKING BASED ON RAO-BLACKWELLIZED MONTE CARLO DATA ASSOCIATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 387-394. DOI: 10.5220/0003863103870394


in Bibtex Style

@conference{visapp12,
author={Oliver Greß and Stefan Posch},
title={PARAMETRIC DATA ASSOCIATION PRIOR FOR MULTI-TARGET TRACKING BASED ON RAO-BLACKWELLIZED MONTE CARLO DATA ASSOCIATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={387-394},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003863103870394},
isbn={978-989-8565-04-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
TI - PARAMETRIC DATA ASSOCIATION PRIOR FOR MULTI-TARGET TRACKING BASED ON RAO-BLACKWELLIZED MONTE CARLO DATA ASSOCIATION
SN - 978-989-8565-04-4
AU - Greß O.
AU - Posch S.
PY - 2012
SP - 387
EP - 394
DO - 10.5220/0003863103870394