synthesis through motion body estimation and hybrid
sensors composed by video cameras and a low cost
depth camera based on structured-light. The solu-
tion addresses the geometry reconstruction challenge
from traditional video cameras array, that is, the lack
of accuracy in low-texture or repeated pattern region.
We present a full 3D body reconstruction system that
combines visual features and shape-based alignment.
Experimental results shows that considering a high
number of inliers (not all SURF point features) in-
creases the alignment accuracy. Modeling is based
on meshes computed from dense depth maps in order
lower the data to be processed and create a 3D mesh
representation that is independent of view-point. This
work presents an on-line incremental 3D reconstruc-
tion framework that can be used on low cost telep-
resence applications to enable socialization and en-
tertainment.
REFERENCES
Akbarzadeh, A., Frahm, J.-M., Mordohai, P., Clipp, B., En-
gels, C., Gallup, D., Merrell, P., Phelps, M., Sinha,
S. N., Talton, B., Wang, L., Yang, Q., Stew
´
enius, H.,
Yang, R., Welch, G., Towles, H., Nist
´
er, D., and Polle-
feys, M. (2006). Towards urban 3d reconstruction
from video. In 3DPVT, pages 1–8. IEEE Computer
Society.
Aliakbarpour, H., Almeida, L., Menezes, P., and Dias,
J. (2011). Multi-sensor 3d volumetric recon-
struction using cuda. 3D Research, 2:1–14.
10.1007/3DRes.04(2011)6.
Almeida, L., Menezes, P., Seneviratne, L., and Dias, J.
(2011). Incremental 3d body reconstruction frame-
work for robotic telepresence applications. In Robo
2011: The 2nd IASTED International Conference on
Robotics, Pittsburgh, USA.
Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-
squares fitting of two 3-d point sets. IEEE Trans. Pat-
tern Anal. Mach. Intell., 9:698–700.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S.,
and MacIntyre, B. (2001). Recent advances in aug-
mented reality. IEEE Comput. Graph. Appl., 21:34–
47.
Bailenson, J., Patel, K., Nielsen, A., Bajscy, R., Jung, S.-H.,
and Kurillo, G. (2008). The Effect of Interactivity on
Learning Physical Actions in Virtual Reality. Media
Psychology, 11(3):354–376.
Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf:
Speeded up robust features. In In ECCV, pages 404–
417.
Besl, P. J. and McKay, N. D. (1992). A method for registra-
tion of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14:239–256.
Bohil, C., Owen, C., Jeong, E., Alicea, B., and Biocca, F.
(2009). Virtual Reality and presence, 21st Century
Communication: A reference handbook. SAGE Pub-
lications, Inc.
Challis, J. (1995). A procedure for determining rigid body
transformation parameters. Journal of Biomechanics,
28(6):733–737.
Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Esti-
mating 3D rigid body transformations: a comparison
of four major algorithms. MAchine Vision and Appli-
cations, 9:272–290.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24:381–395.
Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D.
(2010). RGB-D Mapping: Using Depth Cameras for
Dense 3D Modeling of Indoor Environments. In RSS
Workshop on Advanced Reasoning with Depth Cam-
eras.
Isgro, F., Trucco, E., Kauff, P., and Schreer, O. (2004).
Three-dimensional image processing in the future of
immersive media. Circuits and Systems for Video
Technology, IEEE Transactions on, 14(3):288 – 303.
Jung, S.-H. and Bajcsy, R. (2006). A framework for con-
structing real-time immersive environments for train-
ing physical activities. Journal of Multimedia, 1(7):9–
17.
Konolige, K. and Agrawal, M. (2008). Frameslam:
From bundle adjustment to real-time visual mapping.
Robotics, IEEE Transactions on, 24(5):1066 –1077.
Kurillo, G., Koritnik, T., Bajd, T., and Bajcsy, R. (2011).
Real-time 3d avatars for tele-rehabilitation in virtual
reality. Stud Health Technol Inform, 163:290–6.
Kurillo, G., Vasudevan, R., Lobaton, E., and Bajcsy, R.
(2008). A framework for collaborative real-time 3d
teleimmersion in a geographically distributed environ-
ment. In Multimedia, 2008. ISM 2008. Tenth IEEE
International Symposium on, pages 111 –118.
Lange, B., Requejo, P., Flynn, S., Rizzo, A., Valero-Cuevas,
F., Baker, L., and Winstein, C. (2010). The potential
of virtual reality and gaming to assist successful aging
with disability. Physical Medicine and Rehabilitation
Clinics of North America, 21(2):339 – 356.
Lanier, J. (2001). Virtually there. j-SCI-AMER, 284(4):66–
75.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60:91–
110.
May, S., Droeschel, D., Holz, D., Fuchs, S., Malis,
E., N
¨
uchter, A., and Hertzberg, J. (2009). Three-
dimensional mapping with time-of-flight cameras. J.
Field Robot., 26:934–965.
Menezes, P., Lerasle, F., and Dias, J. (2011). Towards hu-
man motion capture from a camera mounted on a mo-
bile robot. IVC, 29(6):382–393.
Mirisola, L. G. B., Lobo, J., and Dias, J. (2007). 3d map
registration using vision/laser and inertial sensing. In
EMCR.
Nahrstedt, K., Yang, Z., Wu, W., Arefin, M. A., and Rivas,
R. (2011). Next generation session management for
GRAPP 2012 - International Conference on Computer Graphics Theory and Applications
478