REFERENCES
Ayache, S. and Qu
´
enot, G. (2007). Evaluation of active
learning strategies for video indexing. Signal Process-
ing: Image Communication, 22(7-8):692–704.
Ayache, S. and Qu
´
enot, G. (2008). Video Corpus Annota-
tion Using Active Learning. In Macdonald, C., Ounis,
I., Plachouras, V., Ruthven, I., and White, R., editors,
Advances in Information Retrieval, volume 4956 of
Lecture Notes in Computer Science, pages 187–198.
Springer Berlin / Heidelberg.
Ayache, S., Qu
´
enot, G., and Gensel, J. (2006). CLIPS-LSR
Experiments at TRECVID 2006. In TREC Video Re-
trieval Evaluation Online Proceedings. TRECVID.
Beran, V., Hradis, M., Otrusina, L., and Reznicek, I. (2011).
Brno University of Technology at TRECVid 2011. In
TRECVID 2011: Participant Notebook Papers and
Slides, Gaithersburg, MD, US. National Institute of
Standards and Technology.
Brezeale, D. and Cook, D. J. (2008). Automatic Video Clas-
sification: A Survey of the Literature. IEEE Transac-
tions on Systems Man and Cybernetics Part C Appli-
cations and Reviews, 38(3):416–430.
Cortes, C. and Vapnik, V. (1995). Support-Vector Networks.
Machine Learning, 20(3):273–297.
Gauvain, J.-L., Lamel, L., and Adda, G. (2002). The LIMSI
Broadcast News transcription system. Speech Com-
munication, 37(1-2):89–108.
Hradis, M., Reznicek, I., and Behun, K. (2011). Brno Uni-
versity of Technology at MediaEval 2011 Genre Tag-
ging Task. In Working Notes Proceedings of the Me-
diaEval 2011 Workshop, Pisa, Italy.
Ionescum, B., Seyerlehner, K., Vertan, C., and Lamber, P.
(2011). Audio-Visual Content Description for Video
Genre Classi?cation in the Context of Social Media.
In MediaEval 2011 Workshop, Pisa, Italy.
Larson, M., Eskevich, M., Ordelman, R., Kofler, C.,
Schmeideke, S., and Jones, G. J. F. (2011). Overview
of MediaEval 2011 Rich Speech Retrieval Task and
Genre Tagging Task. In MediaEval 2011 Workshop,
Pisa, Italy.
Le, Q. V., Zou, W. Y., Yeung, S. Y., and Ng, A. Y. (2011).
Learning hierarchical invariant spatio-temporal fea-
tures for action recognition with independent sub-
space analysis. Learning, pages 1–4.
Lowe, D. G. (1999). Object Recognition from Local Scale-
Invariant Features. In ICCV ’99: Proceedings of the
International Conference on Computer Vision-Volume
2, page 1150, Washington, DC, USA. IEEE Computer
Society.
Mikolajczyk, K. (2004). Scale & Affine Invariant Interest
Point Detectors. International Journal of Computer
Vision, 60(1):63–86.
Mikolajczyk, K. and Schmid, C. (2005). A Performance
Evaluation of Local Descriptors. IEEE Trans. Pattern
Anal. Mach. Intell., 27(10):1615–1630.
Perronnin, F., Senchez, J., and Xerox, Y. L. (2010). Large-
scale image categorization with explicit data embed-
ding. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2297–
2304, San Francisco, CA.
Rouvier, M. and Linares, G. (2011). LIA @ MediaEval
2011 : Compact Representation of Heterogeneous De-
scriptors for Video Genre Classi?cation. In MediaEval
2011 Workshop, Pisa, Italy.
Smeaton, A. F., Over, P., and Kraaij, W. (2009). High-Level
Feature Detection from Video in TRECVid: a 5-Year
Retrospective of Achievements. In Divakaran, A., ed-
itor, Multimedia Content Analysis, Theory and Appli-
cations, pages 151–174. Springer Verlag, Berlin.
Snoek, C. G. M., van de Sande, K. E. A., de Rooij, O., Hu-
urnink, B., Gavves, E., Odijk, D., de Rijke, M., Gev-
ers, T., Worring, M., Koelma, D. C., and Smeulders,
A. W. M. (2010). The MediaMill TRECVID 2010
Semantic Video Search Engine. In TRECVID 2010:
Participant Notebook Papers and Slides.
Van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M.
(2010). Evaluating Color Descriptors for Object and
Scene Recognition. {IEEE} Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1582–1596.
Van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M.,
and Geusebroek, J. M. (2010). Visual Word Ambigu-
ity. PAMI, 32(7):1271–1283.
You, J., Liu, G., and Perkis, A. (2010). A semantic frame-
work for video genre classification and event analysis.
Signal Processing Image Communication, 25(4):287–
302.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
646