π/2 0 π/2 0
Figure 9: Mass distribution in root, w. r. t. depth and root
angle. Darker regions represent more mass. Left: Unnor-
malized mass, shows that horizontal roots are prevalent and
bind most of the water. Middle: Mass normalized by number
of roots, shows that vertical roots tend to have more mass
than horizontal ones. Directly beneath the soil surface, roots
tend to have more mass regardless of direction. Bottom plots
depict the marginal mass distribution of angle. Right: Model
visualization weighted by estimated mass (cmp. Fig. 3).
For real data of barley roots we showed, how the
derived structural and local quantities can readily be
used for plant root phenotyping.
REFERENCES
Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pat-
tison, R. J., Blatt, M. R., and Amtmann, A. (2009).
Ez-rhizo: integrated software for the fast and accu-
rate measurement of root system architecture. Plant
Journal, 57(5):945–956.
Brown, J. M., Kramer, P. J., Cofer, G. P., and Johnson, G. A.
(1990). Use of nuclear-magnetic resonance microscopy
for noninvasive observations of root-soil water rela-
tions. Theoretical and Applied Climatology, pages
229–236.
Dijkstra, E. (1959). A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271.
Dowdy, R., Smucker, A., Dolan, M., and Ferguson, J. (1998).
Automated image analyses for separating plant roots
from soil debris elutrated from soil cores. Plant and
Soil, 200:91–94.
Ferreira, S., Senning, M., Sonnewald, S., Keßling, P.-M.,
Goldstein, R., and Sonnewald, U. (2010). Comparative
transcriptome analysis coupled to x-ray ct reveals su-
crose supply and growth velocity as major determinants
of potato tuber starch biosynthesis. BMC Genomics.
Online journal, 11(17).
Frangi, A., Niessen, W., Vincken, K., and Viergever, M.
(1998). Multiscale vessel enhancement filtering. Medi-
cal Image Computing and Computer-Assisted Interven-
tation (MICCAI), pages 130–137.
Haacke, E., Brown, R., Thompson, M., and Venkatesan,
R. (1999). Magnetic Resonance Imaging, Physical
Principles and Sequence Design. John Wiley & Sons.
Haber-Pohlmeier, S., van Dusschoten, D., and Stapf, S.
(2009). Waterflow visualized by tracer transport in
root-soil-systems using MRI. In Geophysical Research
Abstracts, volume 11.
Jahnke, S., Menzel, M. I., van Dusschoten, D., Roeb, G. W.,
B
¨
uhler, J., Minwuyelet, S., Bl
¨
umler, P., Temperton,
V. M., Hombach, T., Streun, M., Beer, S., Khodaverdi,
M., Ziemons, K., Coenen, H. H., and Schurr, U. (2009).
Combined MRI-PET dissects dynamic changes in plant
structures and functions. Plant Journal, pages 634–
644.
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., and
Trousset, Y. (1998). Model based multiscale detection
of 3d vessels. In Proceedings of the Workshop on
Biomedical Image Analysis, pages 202–210. IEEE.
Lindeberg, T. (1996). Edge detection and ridge detection
with automatic scale selection. In CVPR, pages 465–
470.
Lo, P., van Ginneken, B., and de Bruijne, M. (2010). Vessel
tree extraction using locally optimal paths. In Biomed-
ical Imaging: From Nano to Macro, pages 680–683.
M
¨
uhlich, M., Truhn, D., Nagel, K., Walter, A., Scharr, H.,
and Aach, T. (2008). Measuring plant root growth.
In Pattern Recognition 2008, volume 5096 of Lecture
Notes in Computer Science, pages 497–506. Springer.
Nagel, K. A., Schurr, U., and Walter, A. (2006). Dynamics
of root growth stimulation in nicotiana tabacum in
increasing light intensity. Plant Cell and Environment,
29(10):1936–1945.
Nakanishi, T., Okuni, Y., Furukawa, J., Tanoi, K., Yokota, H.,
Ikeue, N., Matsubayashi, M., Uchida, H., and Tsiji, A.
(2003). Water movement in a plant sample by neutron
beam analysis as well as positron emission tracer imag-
ing system. Journal of Radioanalytical and Nuclear
Chemistry, 255:149–153.
Pierret, A., Doussan, C., Garrigues, E., and Kirby, J. M.
(2003). Observing plant roots in their environment:
current imaging options and specific contribution of
two-dimensional approaches. Agronomy for Sustain-
able Development, 23(5–6):471–479.
Postma, J. A. and Lynch, J. P. (2011a). Root cortical
aerenchyma enhances the acquisition and utilization
of nitrogen, phosphorus, and potassium in zea mays l.
Plant Physiology, 156(3):1190–1201.
Postma, J. A. and Lynch, J. P. (2011b). Theoretical evidence
for the functional benefit of root cortical aerenchyma
in soils with low phosphorus availability. Annals of
Botany, 107(5):829–841.
Southon, T. E. and Jones, R. A. (1992). NMR imaging
of roots – methods for reducing the soil signal and
for obtaining a 3-dimensional description of the roots.
Physiologia Plantarum, pages 322–328.
VISAPP 2012 - International Conference on Computer Vision Theory and Applications
32