ANALYSIS OF DEFORMATION PROCESSES USING BLOCK-MATCHING TECHNIQUES

Alvaro Rodriguez, Carlos Fernandez-Lozano, Jose-Antonio Seoane, Juan R. Rabuñal, Julian Dorado

2012

Abstract

Non rigid motion estimation is one of the main issues in computer vision. Its applications range from civil engineering or traffic systems to medical image analysis. The challenge consists in processing a sequence of images from of a physical body subjected to deformation processes and extracting its displacement field. In this paper, an iterative Block-Matching technique is proposed to measure displacements in deformable surfaces. This technique is based on successive interpolation and smoothing phases to calculate the dense displacement field of a body. The proposed technique was experimentally validated by studying the Yosemite sequence and it was tested in the analysis of strength test and biomedical images.

References

  1. Almansa A, Gerschuni M, Pardo A and Preciozzi J: 2007. Processing of 2D Electrophoresis Gels Iccv - Workshop on Computer Vision Applications for Developing Countries.
  2. Amiaz T, Lubetzky E and Kiryati N: 2007. Coarse to overfine optical flow estimation.Pattern Recognition. 40(9):2494-1503.
  3. Austvoll I: 2005. A study of the yosemite sequence used as a test sequence for estimation of optical flow. Lecture Notes in Computer Science. 3540(2005):659-668.
  4. Baker S, Scharstein D and Lewis JP. Middlebury computer vision pages, an evaluation of optical flow algorithms. http://vision.middlebury.edu/ow/eval. (Accessed: 2011).
  5. Basarab. A, Aoudi W, Liebgott H, Vray D and Delachartre P. Parametric Deformable Block Matching for Ultrasound Imaging. IEEE International conference on Image Processing. (2007).
  6. Deng Z, Richmond MC, Guest GR and Mueller RP: 2004. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging, Technical Report PNNL-14819.
  7. Grewenig S, Zimmer S and Weickert J: 2011. Rotationally invariant similarity measures for nonlocal image denoising. Journal of Visual Communication and Image Representation. 22(2):117-130.
  8. Heeger D: 1987. Model for the extraction of image flow. Journal of the Optical Society of America A: Optics, Image Science, and Vision 4(1987):1455-1471.
  9. Horn BKP and Schunk BG: 1981. Determining optical flow. Artificial Intelligence 17:185-203.
  10. Ng KH, Po LM, Cheung KW and Wong KM: 2010. Block-Matching Translational and Rotational Motion Compensated Prediction Using Interpolated Reference Frame. Journal on Advances in Signal Processing.
  11. OPENCV. Open Source Computer Vision. http://opencv.willowgarage.com (Accessed: 2011).
  12. PIV. Particle image Velocimetry. http://www.piv.de (Accessed: 2011).
  13. Raffel M, Willert C and Kompenhans J: 2000. Particle image velocimetry, a practical guide. Springer, Berlin.
  14. Raffel M, Willert C and Kompenhans J: 2007. Particle image velocimetry, a practical guide, Second Edition. Springer, Berlin.
  15. Rohr K, Cathier P and Wrz S: 2004. Elastic registration of electrophoresis images using intensity information and point landmarks. Pattern Recognition 37:035-1048 .
  16. Scharstein D, Baker S, and Lewis JP: 2007. A database and evaluation methodology for Optical Flow. ICCV.
  17. Voss T and Haberl P: 2000. Observations on the reproducibility and matching effciency of twodimensional electrophoresis gels: consequences for comprehensive data analysis. Electrophoresis 21:3345-3350.
  18. Wrz S, Winz M and Rohr K: 2008. Geometric alignment of 2D gel electrophoresis images using physics-based elastic registration. IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
  19. Zhang: 1999. Flexible Camera Calibration by Viewing a Plane From Unknown Orientations. IEEE International Conference on Computer Vision. 1: 666-673.
Download


Paper Citation


in Harvard Style

Rodriguez A., Fernandez-Lozano C., Seoane J., Rabuñal J. and Dorado J. (2012). ANALYSIS OF DEFORMATION PROCESSES USING BLOCK-MATCHING TECHNIQUES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 327-332. DOI: 10.5220/0003872003270332


in Bibtex Style

@conference{visapp12,
author={Alvaro Rodriguez and Carlos Fernandez-Lozano and Jose-Antonio Seoane and Juan R. Rabuñal and Julian Dorado},
title={ANALYSIS OF DEFORMATION PROCESSES USING BLOCK-MATCHING TECHNIQUES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={327-332},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003872003270332},
isbn={978-989-8565-04-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
TI - ANALYSIS OF DEFORMATION PROCESSES USING BLOCK-MATCHING TECHNIQUES
SN - 978-989-8565-04-4
AU - Rodriguez A.
AU - Fernandez-Lozano C.
AU - Seoane J.
AU - Rabuñal J.
AU - Dorado J.
PY - 2012
SP - 327
EP - 332
DO - 10.5220/0003872003270332