complex diseases. New wet-lab or in-silico methods
to accurately reconstruct very long haplotypes instead
of using the expensivenuclear family data sets haveto
be defined. Moreover, the method needs to be tested
in other polygenic diseases.
ACKNOWLEDGEMENTS
The authors were supported by the Spanish Research
Program under project TIN2010-20900-C04, the An-
dalusian Research Program under project P08-TIC-
03717 and the European Regional Development Fund
(ERDF). The authors thank Paola Sebastiani for her
help in the work undertaken.
REFERENCES
Abad-Grau, M., Medina-Medina, N., Montes-Soldado, R.,
Matesanz, F., and Bafna, V. (2011). Sample repro-
ducibility of genetic association using different multi-
marker tdts in genome-wide association studies: Char-
acterization and a new approach. PLoS ONE, ac-
cepted.
Abad-Grau, M., Medina-Medina, N., Montes-Soldado, R.,
Moreno-Ortega, J., and Matesanz, F. (2010). Genome-
wide association filtering using a highly locus-specific
transmission/disequilibrium test. Human Genetics,
128:325–44.
BickeB¨oller, H. and Clerget-Darpoux, F. (1995). Statis-
tical properties of the allelic and genotypic trans-
mission/disequilibrium test for multiallelic markers.
Genet Epidemiol, 12:865–70.
Domingos, P. and Pazzani, M. (1997). On the optimality
of the simple bayesian classifier under zero-one loss.
Machine Learning, 29:103–37.
Evans, D., Visscher, P., and Wray, N. (2009). Harness-
ing the information contained within genome-wide as-
sociation studies to improve individual prediction of
complex disease risk. Human Molecular Genetics,
18:3525–31.
(IMSGC), I. M. S. G. C. (2010). Evidence for poly-
genic susceptibility to multiple sclerosis - the shape
of things to come. Am J Hum Genet, 86:621–5.
Jager, P. D., Chibnik, L., Cui, J., Reischl, J., Lehr, S., Si-
mon, K., Aubin, C., Bauer, D., Heubach, J., Sand-
brink, R., Tyblova, M., Lelkova, P., ’Steering com-
mittee of the BENEFIT study, committee of the BE-
YOND study’, S., committee of the LTF study’, S.,
committee of the CCR1 study’, S., E, E. H., Pohl, C.,
Horakova, D., Ascherio, A., Hafler, D., and Karlson.,
E. (2009). Integration of genetic risk factors into a
clinical algorithm for multiple sclerosis susceptibil-
ity: a weighted genetic risk score. Lancet Neurol.,
8(12):1111–9.
Kuusisto, H., Kaprio, J., Kinnunen, E., Luukkaala, T.,
Koskenvuo, M., and Elovaara, I. (2008). Concor-
dance and heritability of multiple sclerosis in finland:
study on a nationwide series of twins. Eur J Neurol.,
15(10):1106–10.
Moreno-Ortega, J. J., Medina-Medina, N., Montes-
Soldado, R., and Abad-Grau, M. M. (2011). Improv-
ing reproducibility on tree based multimarker meth-
ods: Treedth. In Rocha, M., Corchado, J., Fern´andez-
Riverola, F., and Valencia, A., editors, PACBB ’11:
Proceedings of the 5th International Conference on
Practical APplications of Computational Biology and
Bioinformatics, volume 1, pages 1–8, Berlin, Heidel-
berg. Springer-Verlag.
Sebastiani, P. and Solovieff, N. (2011). Nave bayesian clas-
sifier and genetic risk score for genetic risk prediction
of a categorical trait: Not so different after all! sub-
mitted.
Sevon, P., Toivonen, H., and Ollikainen, V. (2006). Treedt:
Tree pattern mining for gene mapping. IEEE/ACM
Trans. Comput. Biol. Bioinf., 3(2):174–85.
Sham, P. C. and Curtis, D. (1995). An extended transmis-
sion/disequilibrium test (tdt) for multiallelic marker
loci. Annals of Human Genetics, 59:323–336.
Tzeng, J., Devlin, B., Wasserman, L., and Roeder, K.
(2003). On the identification of disease mutations by
the analysis of haplotype similarity and goodness of
fit. Am J Hum Genet, 72:891–902.
Wang, J. H., Pappas, D., Jager, P. L. D., Pelletier, D.,
de Bakker, P. I., Kappos, L., Polman, C. H., ‘Aus-
tralian, (ANZgene)’, N. Z. M. S. G. C., Chibnik,
L. B., Hafler, D. A., Matthews, P. M., Hauser, S. L.,
Baranzini, S. E., and Oksenberg, J. R. (2011). Mod-
eling the cumulative genetic risk for multiple scle-
rosis from genome-wide association data. Genome
Medicine, 3:3.
Wray, N., Goddard, M., and Visscher, P. (2007). Predic-
tion of individual genetic risk to disease from genome-
wide association studies. Genome Research, 17:1520–
28.
Yu, K., Gu, C. C., Xiong, C., An, P., and Province,
M. (2005). Global Transmission/Disequilibrium tests
based on haplotype sharing in multiple candidate
genes. Genetic Epidemiology, 29:223–35.
Zhang, S., Sha, Q., Chen, H., Dong, J., and Jiang, R. (2003).
Transmission/Disequilibrium test based on haplotype
sharing for tightly linked markers. Am J Hum Genet,
73:566–79.
BIOINFORMATICS 2012 - International Conference on Bioinformatics Models, Methods and Algorithms
366