BIOMIMETIC COMPUTER-AIDED DESIGN AND MANUFACTURE OF COMPLEX BIOLOGICAL SURFACES

Andrés Díaz Lantada, Pilar Lafont Morgado, Javier Echávarri Otero, Enrique Chacón Tanarro, Eduardo de la Guerra Ochoa, Juan Manuel Munoz-Guijosa, José Luis Muñoz Sanz

2012

Abstract

Conventional computer-aided design software does not yet provide special tools oriented to modeling the complexity of biological systems, as such programs are mainly developed for promoting information exchange in tasks related to industrial design and to parts with regular smooth surfaces. The process explained in this study allows defining and precisely controlling the topography of surfaces from the design stage, with help of computer-aided design tools. Its application to obtaining a biomimetic surface based on the leaves of the Lotus flower (Nelumbo nucifera), renowned for its outstanding self-healing and tribological properties, is shown as example. Some reflections on potential remarkable applications, linked to the development of implants and prototypes with applications in several industries, have also been included.

References

  1. Mandelbrot, B. B. (1982). The Fractal Geometry of Nature, W. H. Freeman and Company.
  2. Falconer, K. (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.
  3. Tsyganov, M. A., Kresteva, I. B., Aslanidi, G. V., Aslanidi, K. B., Deev, A. R. and Ivanitsky, G. R. (2007). The mechanism of fractal-like structure formation by bacterial populations. Journal of Biological Physics, 25, 165-176.
  4. Lin, D. W., Johnson S. and Hunt, C. A. (2004). Modeling liver physiology: Combining fractals, imaging and animation. Proceedings of the 26th Annual International Conference of the IEEE EMBS, 3120- 3123.
  5. Longoni, S. and Sartori, M. (2010). Fractal geometry of nature (bone) may inspire medical devices shape. Nature Proceedings.
  6. Barthlott, W. and Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1-8.
  7. Groenendijk, M. (2007). Self cleaning Lotus leaf imitated in plastic by using a femtosecond laser. Univ. Twente, Source: www.physorg.com
  8. Díaz Lantada, A., Lafont Morgado, P. et al. (2010a). Substrato cuasibidimensional para crecimiento de células y tejidos y método de obtención del mismo. Spanish Patent and Trademark Office, Patent application number P201030957.
  9. Díaz Lantada, A., Mosquera, A. A., Endrino, J. L. and Lafont, P. (2010b). Design and rapid prototyping of DLC coated surfaces for tissue engineering applications. Journal of Physics, Conference Series, 252, 012003.
  10. Infür, R., Pucher, N., Heller, C., Lichtenegger, H., Liska, R., Schmidt, V., Kuna, L., Haase, A. and Stampfl, J. (2007). Functional polymers by two-photon 3D lithography. Applied Surface Science, 254, 836-840.
  11. Choi, J., Wicker, R., Lee, S. H., Choi, K. H., Ha, C. S. and Chung, I. (2009). Fabrication of 3D biocompatible / biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209, 5494-5503.
  12. Stampfl, J., Schuster, M., Baudis, S., Lichtenegger, H., Liska, R., Turecek, C. and Varga, F. (2007). Biodegradable stereolithography resins with defined mechanical properties. Proceedings VRAP 2007, 283-288.
  13. Gad-el-Hak, M. (2002). The MEMS Handbook, CRC Press.
  14. Shi, H., Farag, A. A., Fahmi, R. and Chen, D. (2008). Validation of finite element models of liver tissue using micro-CT. IEEE Transactions on Biomedical Engineering, 55, 978-985.
  15. Guo, X., Liu, X., Wang, X., Tian, F., Liu, F., Zhang, B., Hu, G., and Bai, J. (2010). A combined fluorescence and microcomputed tomography system for small animal imaging. IEEE Transactions on Biomedical Engineering, 58, 2876-2883.
Download


Paper Citation


in Harvard Style

Díaz Lantada A., Lafont Morgado P., Echávarri Otero J., Chacón Tanarro E., de la Guerra Ochoa E., Munoz-Guijosa J. and Muñoz Sanz J. (2012). BIOMIMETIC COMPUTER-AIDED DESIGN AND MANUFACTURE OF COMPLEX BIOLOGICAL SURFACES . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 286-290. DOI: 10.5220/0003889002860290


in Bibtex Style

@conference{biodevices12,
author={Andrés Díaz Lantada and Pilar Lafont Morgado and Javier Echávarri Otero and Enrique Chacón Tanarro and Eduardo de la Guerra Ochoa and Juan Manuel Munoz-Guijosa and José Luis Muñoz Sanz},
title={BIOMIMETIC COMPUTER-AIDED DESIGN AND MANUFACTURE OF COMPLEX BIOLOGICAL SURFACES},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},
year={2012},
pages={286-290},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003889002860290},
isbn={978-989-8425-91-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
TI - BIOMIMETIC COMPUTER-AIDED DESIGN AND MANUFACTURE OF COMPLEX BIOLOGICAL SURFACES
SN - 978-989-8425-91-1
AU - Díaz Lantada A.
AU - Lafont Morgado P.
AU - Echávarri Otero J.
AU - Chacón Tanarro E.
AU - de la Guerra Ochoa E.
AU - Munoz-Guijosa J.
AU - Muñoz Sanz J.
PY - 2012
SP - 286
EP - 290
DO - 10.5220/0003889002860290