COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines

Frans van der Sluis, Ton Dijkstra, Egon L. van den Broek

2012

Abstract

This study explores the feasibility of sensitive machines; that is, machines with empathic abilities, at least to some extent. A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients participated. The feasibility of speech as a stress detector was validated in a clinical setting, using the Subjective Unit of Distress (SUD). 13 statistical parameters were derived from five speech features, namely: amplitude, zero crossings, power, high-frequency power, and pitch. To achieve a low dimensional representation, a subset of 28 parameters was selected and, subsequently, compressed into 11 principal components (PC). Using a Multi-Layer Perceptron neural network (MLP), the set of 11 PC were mapped upon 9 distinct quantizations of the SUD. The MLP was able to discriminate between 2 stress levels with 82.4% accuracy and up to 10 stress levels with 36.3% accuracy. With stress baptized as being the black death of the 21st century, this work can be conceived as an important step towards computer aided mental health care.

References

  1. Banse, R. and Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3):614-636.
  2. Brosschot, J. F. (2010). Markers of chronic stress: Prolonged physiological activation and (un)conscious perseverative cognition. Neuroscience & Biobehavioral Reviews, 35(1):46-50.
  3. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., and Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1):32-80.
  4. Craig, D. A. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8):655-666.
  5. Domschke, K., Stevens, S., Pfleiderer, B., and Gerlach, A. L. (2010). Interoceptive sensitivity in anxiety and anxiety disorders: An overview and integration of neurobiological findings. Clinical Psychology Review, 30(1):1-11.
  6. El Ayadi, M., Kamel, M. S., and Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition, 44(3):572-587.
  7. Fillingim, R. B., Roth, D. L., and Cook III, E. W. (1992). The effects of aerobic exercise on cardiovascular, facial EMG, and self-report responses to emotional imagery. Psychosomatic Medicine, 54(1):109-120.
  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10-18.
  9. He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9):1263-1284.
  10. Healey, J. A. and Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2):156-166.
  11. Kirschbaum, C., Pirke, K. M., and Hellhammer, D. H. (1993). The “Trier Social Stress Test”- A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1-2):76-81.
  12. Picard, R. W. (2010). Emotion research by the people, for the people. Emotion Review, 2(3):250-254.
  13. Rossing, T. D., Dunn, F., Hartmann, W. M., Campbell, D. M., and Fletcher, N. H. (2007). Springer handbook of acoustics. Berlin/Heidelberg, Germany: SpringerVerlag.
  14. Sánchez-Meca, J., Rosa-Alcázar, A. I., Marín-Martínez, F., and Gómez-Conesa, A. (2010). Psychological treatment of panic disorder with or without agoraphobia: A meta-analysis. Clinical Psychology Review, 30(1):37-50.
  15. Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40(1-2):227-256.
  16. Schuller, B., Batliner, A., Steidl, S., and Seppi, D. (2011). Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Communication, 53(9-10):1062-1087.
  17. Schwabe, L., Wolf, O. T., and Oitzl, M. S. (2010). Memory formation under stress: Quantity and quality. Neuroscience & Biobehavioral Reviews, 34(4):584-591.
  18. Van den Broek, E. L. (2010). Robot nannies: Future or fiction? Interaction Studies, 11(2):274-282.
  19. Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2009). Therapy Progress Indicator (TPI): Combining speech parameters and the subjective unit of distress. In Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, ACII, volume 1, pages 381-386, Amsterdam, The Netherlands. IEEE Press.
  20. Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2011). Telling the story and re-living the past: How speech analysis can reveal emotions in posttraumatic stress disorder (PTSD) patients, volume 12 of Philips Research Book Series, chapter 10, pages 153-180. Dordrecht, The Netherlands: Springer Science+Business Media B.V.
  21. Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2012). Cross-validation of bimodal health-related stress assessment. Personal and Ubiquitous Computing, 16:[in press].
  22. Van den Broek, E. L. and Westerink, J. H. D. M. (2009). Considerations for emotion-aware consumer products. Applied Ergonomics, 40(6):1055-1064.
  23. Van der Sluis, F., van den Broek, E. L., and Dijkstra, T. (2010). Towards semi-automated assistance for the treatment of stress disorders. In HealthInf 2010: Proceedings of the Third International Conference on Health Informatics, pages 446-449, Valencia, Spain. INSTICC - Institute for Systems and Technologies of Information, Control and Communication.
  24. Van der Sluis, F., van den Broek, E. L., and Dijkstra, T. (2011). Towards an artificial therapy assistant: Measuring excessive stress from speech. In Proceedings of the International Conference on Health Informatics, pages 357-363, Rome, Italy. Portugal: SciTePress.
  25. Wolpe, J. (1958). Psychotherapy by reciprocal inhibition. Stanford, CA, USA: Stanford University Press.
  26. Yang, B. and Lugger, M. (2010). Emotion recognition from speech signals using new harmony features. Signal Processing, 90(5):1415-1423.
Download


Paper Citation


in Harvard Style

van der Sluis F., Dijkstra T. and L. van den Broek E. (2012). COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines . In Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 493-498. DOI: 10.5220/0003891404930498


in Bibtex Style

@conference{bsss12,
author={Frans van der Sluis and Ton Dijkstra and Egon L. van den Broek},
title={COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012)},
year={2012},
pages={493-498},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003891404930498},
isbn={978-989-8425-88-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012)
TI - COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines
SN - 978-989-8425-88-1
AU - van der Sluis F.
AU - Dijkstra T.
AU - L. van den Broek E.
PY - 2012
SP - 493
EP - 498
DO - 10.5220/0003891404930498