COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines
Frans van der Sluis, Ton Dijkstra, Egon L. van den Broek
2012
Abstract
This study explores the feasibility of sensitive machines; that is, machines with empathic abilities, at least to some extent. A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients participated. The feasibility of speech as a stress detector was validated in a clinical setting, using the Subjective Unit of Distress (SUD). 13 statistical parameters were derived from five speech features, namely: amplitude, zero crossings, power, high-frequency power, and pitch. To achieve a low dimensional representation, a subset of 28 parameters was selected and, subsequently, compressed into 11 principal components (PC). Using a Multi-Layer Perceptron neural network (MLP), the set of 11 PC were mapped upon 9 distinct quantizations of the SUD. The MLP was able to discriminate between 2 stress levels with 82.4% accuracy and up to 10 stress levels with 36.3% accuracy. With stress baptized as being the black death of the 21st century, this work can be conceived as an important step towards computer aided mental health care.
References
- Banse, R. and Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3):614-636.
- Brosschot, J. F. (2010). Markers of chronic stress: Prolonged physiological activation and (un)conscious perseverative cognition. Neuroscience & Biobehavioral Reviews, 35(1):46-50.
- Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., and Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1):32-80.
- Craig, D. A. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8):655-666.
- Domschke, K., Stevens, S., Pfleiderer, B., and Gerlach, A. L. (2010). Interoceptive sensitivity in anxiety and anxiety disorders: An overview and integration of neurobiological findings. Clinical Psychology Review, 30(1):1-11.
- El Ayadi, M., Kamel, M. S., and Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition, 44(3):572-587.
- Fillingim, R. B., Roth, D. L., and Cook III, E. W. (1992). The effects of aerobic exercise on cardiovascular, facial EMG, and self-report responses to emotional imagery. Psychosomatic Medicine, 54(1):109-120.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10-18.
- He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9):1263-1284.
- Healey, J. A. and Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2):156-166.
- Kirschbaum, C., Pirke, K. M., and Hellhammer, D. H. (1993). The “Trier Social Stress Test”- A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1-2):76-81.
- Picard, R. W. (2010). Emotion research by the people, for the people. Emotion Review, 2(3):250-254.
- Rossing, T. D., Dunn, F., Hartmann, W. M., Campbell, D. M., and Fletcher, N. H. (2007). Springer handbook of acoustics. Berlin/Heidelberg, Germany: SpringerVerlag.
- Sánchez-Meca, J., Rosa-Alcázar, A. I., Marín-Martínez, F., and Gómez-Conesa, A. (2010). Psychological treatment of panic disorder with or without agoraphobia: A meta-analysis. Clinical Psychology Review, 30(1):37-50.
- Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40(1-2):227-256.
- Schuller, B., Batliner, A., Steidl, S., and Seppi, D. (2011). Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Communication, 53(9-10):1062-1087.
- Schwabe, L., Wolf, O. T., and Oitzl, M. S. (2010). Memory formation under stress: Quantity and quality. Neuroscience & Biobehavioral Reviews, 34(4):584-591.
- Van den Broek, E. L. (2010). Robot nannies: Future or fiction? Interaction Studies, 11(2):274-282.
- Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2009). Therapy Progress Indicator (TPI): Combining speech parameters and the subjective unit of distress. In Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, ACII, volume 1, pages 381-386, Amsterdam, The Netherlands. IEEE Press.
- Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2011). Telling the story and re-living the past: How speech analysis can reveal emotions in posttraumatic stress disorder (PTSD) patients, volume 12 of Philips Research Book Series, chapter 10, pages 153-180. Dordrecht, The Netherlands: Springer Science+Business Media B.V.
- Van den Broek, E. L., van der Sluis, F., and Dijkstra, T. (2012). Cross-validation of bimodal health-related stress assessment. Personal and Ubiquitous Computing, 16:[in press].
- Van den Broek, E. L. and Westerink, J. H. D. M. (2009). Considerations for emotion-aware consumer products. Applied Ergonomics, 40(6):1055-1064.
- Van der Sluis, F., van den Broek, E. L., and Dijkstra, T. (2010). Towards semi-automated assistance for the treatment of stress disorders. In HealthInf 2010: Proceedings of the Third International Conference on Health Informatics, pages 446-449, Valencia, Spain. INSTICC - Institute for Systems and Technologies of Information, Control and Communication.
- Van der Sluis, F., van den Broek, E. L., and Dijkstra, T. (2011). Towards an artificial therapy assistant: Measuring excessive stress from speech. In Proceedings of the International Conference on Health Informatics, pages 357-363, Rome, Italy. Portugal: SciTePress.
- Wolpe, J. (1958). Psychotherapy by reciprocal inhibition. Stanford, CA, USA: Stanford University Press.
- Yang, B. and Lugger, M. (2010). Emotion recognition from speech signals using new harmony features. Signal Processing, 90(5):1415-1423.
Paper Citation
in Harvard Style
van der Sluis F., Dijkstra T. and L. van den Broek E. (2012). COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines . In Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 493-498. DOI: 10.5220/0003891404930498
in Bibtex Style
@conference{bsss12,
author={Frans van der Sluis and Ton Dijkstra and Egon L. van den Broek},
title={COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012)},
year={2012},
pages={493-498},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003891404930498},
isbn={978-989-8425-88-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: BSSS, (BIOSTEC 2012)
TI - COMPUTER AIDED DIAGNOSIS FOR MENTAL HEALTH CARE - On the Clinical Validation of Sensitive Machines
SN - 978-989-8425-88-1
AU - van der Sluis F.
AU - Dijkstra T.
AU - L. van den Broek E.
PY - 2012
SP - 493
EP - 498
DO - 10.5220/0003891404930498