means clustering algorithm. In: Proc. 1st Workshop
on High Performance Data Mining
Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M.,
Murtha, A. (2007). 3D Variational Brain Tumor
Segmentation using a High Dimensional Feature Set.
ICCV
Collins, R., Ge, W. (2008). CSDD Features: Center-
Surround Distribution Distance for Feature Extraction
and Matching. ECCV
Corso, J. J., Sharon, E., Yuille, A. (2006). Multilevel Seg-
mentation and Integrated Bayesian Model Classifica-
tion with an Application to Brain Tumor Segmenta-
tion. MICCAI
Bergo, F. P., Falcao, A., Yasuda, C., Ruppert, G. (2008).
Fast and Robust Mid-Sagittal Plane Location in 3D Mr
Images of the Brain: Biomedical Engineering Systems
and Technologies, vol. 25, pp. 278-290
Gering, D. T. (2003). Diagonalized nearest neighbor pattern
matching for brain tumor segmentation. MICCAI
Grau, V., Mewes, A. U. J., Alcaniz, M., Kiminis, R.,
Warfield, S. K. (2004). Improved watershed transform
for medical image segmentation using prior informa-
tion. IEEE Transactions on Medical Imaging, vol. 23,
iss. 4
Iftekharuddin, K. M., Zheng, J., Islam, M. A., Ogg, R. J.
(2008). Fractal-based brain tumor detection in multi-
modal MRI. AMC
Joshi, S., Lorenzen, P., Gerig, G., Bullitt, E. (2003). Struc-
tural and radiometric asymmetry in brain images.
Medical Image Analysis, 7(2): 155-170
Klein, A., Andersson, J., Ardekani B. A., Ashburner J.,
Avants B., Chiang M. C., Christensen G. E., Collins
D. L., Gee J., Hellier P., Song J. H., Jenkinson M.,
Lepage C., Rueckert D., Thompson P., Vercauteren T.,
Woods R. P., Mann J. J., Parsey R. V. (2009). Evalu-
ation of 14 non-linear deformation algorithm applied
to human brain MRI registration. Neuroimage
Kumar, S., Hebert, M. (2003) Discriminative fields
for modeling spatial dependencies in natural images.
NIPS
Lafferty, J., Pereira, F., McCallum, A. (2001). Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. ICML
Lee, C.H., Greiner, R., Schmidt, M. (2005). Support vector
random fields for spatial classification. In: PKDD, pp.
121–132
Lee, C. H., Wang, S., Murtha, A., Brown, M. R. G., Greiner,
R. (2008). Segmenting Brain Tumors using Pseudo-
Conditional Random Fields. MICCAI
Li, S. Z. (2001). Markov Random Field Modeling in Image
Analysis. Springer-Verlag, Tokyo
Mancas, M., Gosselin, B., and Macq,B. (2005). Fast and
automatic tumoral area localization using symmetry.
IEEE International Conference on Acoustics, Speech
and Signal Processing, 2: 725-728
Ling, H., Okada, K. (2007). An Efficient Earth Mover’s
Distance Algorithm for Robust Histogram Compari-
son. PAMI
Lotufo, R., Falcao, A. (2000). The ordered queue and the
optimality of the watershed approaches, In: Math-
ematical Morphology and its Applications to Image
and Signal Processing, vol. 18, pp. 341-350
Ray, N., Saha, B., and Brown, M.(2007). Locating Brain
Tumors from MR Imagery Using Symmetry. ACSSC
Najnam, L., Couprie, M. (2003). Watershed algorithms and
contrast preservation. In: Lecture notes in computer
science, vol 2886, pp. 62V71.
Prastawa, M., Bullitt, E., Gerig, G. (2004). A Brain Tumor
Segmentation Framework Based on Outlier Detection.
Medical Image Analysis, vol 150.
Ray, N., Saha, B., Brown, M. (2007). Locating Brain Tu-
mors from MR Imagery Using Symmetry. ACSSC.
Schmidt, M., Levner, I., Greiner, R., Murtha, A., Bistritz,
A. (2005). Segmenting brain tumors using alignment-
based features. MLA
Ruppert, G. C. S., Teverovskiy, L., Yu, C., Falcao, A. X.,
Liu, Y. (2011). A New Symmetry-based Method for
Mid-sagittal Plane Extraction in Neuroimages. Inter-
national Symposium on Biomedical Imaging: From
Macro to Nano
Volkau, I., Prakash, K. N. B. , Ananthasubramaniam, A.,
Aziz, A. and Nowinski, W. L. (2006). Extraction of
the midsagittal plane from morphological neuroim-
ages using the Kullback-Leibler’s measure. In: Medi-
cal Image Analysis, 10(6): 863-874
Zhang, J., Ma, K., Er, M., Chong, V. (2004). Tu-
mor Segmentation from Magnetic Resonance Imaging
by Learning via One-Class Support Vector Machine.
IWAIT
Koshy, D., Yu, C., Nguyen, D., Kashyap, S., Collins, R.,
Liu, Y. (2011). Supervised Machine Learning for
Brain Tumor Detection in Structural MRI. In: Ra-
diological Society of North America, RSNA
STATISTICAL ASYMMETRY-BASED BRAIN TUMOR SEGMENTATION FROM 3D MR IMAGES
533