A SOFTWARE PLATFORM TO ANALYZE MR IMAGES BASED ON 3D FRACTAL DIMENSION - Application in Neurodegenerative Diseases
J. Jiménez, A. M. López, F. J. Esteban, P. Villoslada, J. Navas, J. Ruiz de Miras
2012
Abstract
Previous studies carried out by our group have demonstrated that 3D fractal dimension algorithms detect changes in apparently normal magnetic resonance (MR) images of the brain in patients suffering early stages of Multiple Sclerosis. In addition, 3D fractal dimension has also been demonstrated to be useful for detecting brain abnormalities in other cerebral diseases, as in Alzheimer’s disease and in children born after intrauterine growth restriction. Thus, 3D fractal dimension detection has been proposed as a valuable and powerful diagnostic tool. To our knowledge, no user-friendly software is available to obtain the 3D fractal dimension of volumetric MR images. In this paper, we present an optimized Web platform that allows computing the 3D fractal dimension value for uploaded MR images in an interactive user-friendly way. Moreover, and because the computational cost of the involved algorithms is very high for interactive use, we have focused our efforts on the optimization of the appropriate algorithms using the parallel computing power of current GPUs and multi-core CPUs.
References
- Mandelbrot B. B., 1983. The Fractal Geometry of Nature. W. H. Freeman and company
- West B. J., Goldberger A. L., 1987. Physiology in fractal dimensions. Am. Sci. 75, 354-365.
- Hou X., Gilmore R., Mindlin G. B., Solari H. G., 1990. An efficient algorithm for fast O(N/log N) box counting. Phys-Lett-A. 151, 43-46.
- Zhang L., Butler A. J., Sun C. K., Sahgal V., Wittenberg G. F., Yue G. H., 2008. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function. Brain Research 1228, 229-240.
- Fernández, E., Jelinek, H. F., 2001. Use of fractal theory in neuroscience: Methods, advantages, and potential problems. Methods 24, 309-321.
- Thompson, P. M., Schwartz, C., Lin, R. T., et al., 1996. Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16, 4261- 4274.
- Kiselev, V. G., Hahn, K. R., Auer, D. P., 2003. Is the brain cortex a fractal? Neuroimage 20, 1765-1774.
- Liu, J. Z., Zhang, L. D., Yue, G. H., 2003. Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J 85, 4041- 4046.
- Free S L, Sisodiya S. M., Cook M. J., Fish D R, Shorvon S.D., 1996. Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cerebral Cortex 6, 830-836.
- Ha T. H., Yoon U., Lee K. J., Shin Y. W., Lee J. M., Kim I. Y., Ha K. S., Kim S. I,. Kwon J. S., 2005. Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder. Neurosci Lett 384,172-6.
- Zhang L., Liu J. Z., Dean D., Sahgal V., Yue G. H., 2006. A three-dimensional fractal analysis method for quantifying white matter structure in human brain. Journal of Neuroscience Methods 150, 242-253.
- Zhang L., Dean D., Liu J. Z., Sahgal V., Wang X., Yue G. H., 2007. Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiology of Aging 28, 1543-1555.
- Filippi M, Iannucci G, Tortorella C., 1999. Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52, 588-594.
- Esteban F. J., Sepulcre J., Vélez de Mendizábal N., Goñi J., Navas J., Ruiz de Miras J., Bejarano B., Masdeu J. C., Villoslada P., 2007. Fractal dimension and whitematter changes in multiple sclerosis. NeuroImage 36, 543-549.
- Esteban F J, Sepulcre J, Ruiz de Miras J, Navas J, Vélez de Mendizábal N, Goñi J, Quesada J M, Bejarano B, Villoslada P., 2009. Fractal dimension analysis of grey matter in multiple sclerosis. Journal of the Neurological Sciences 282, 67-71.
- Esteban F. J., Padilla N., Sanz-Cortés M., Ruiz de Miras J., Bargalló N., Villoslada P., Gratacós E., 2010. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. NeuroImage 53, 1225-1232.
- Muraki S., Kita Y., 2006. A survey of medical applications of 3D image analysis and computer graphics. Systems and Computers in Japan 37, 13-46.
- Lorensen W. E., Cline, H. E., 1987. Marching Cubes: A high resolution 3D surface construction algorithm. ACM Computer Graphics 21, 163-169.
- Cornea N D, Silver D, Min P., 2007. Curve-skeleton properties, applications and algorithms. IEEE Transactions on Visualization and Computer Graphics 13, 530-548.
- Owens J. D., Luebke D., Govindaraju N., Harris M., Kruger J., Lefohn A. E., Purcell T. J., 2007. A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum 26, 80-113.
- Stone S. S., Haldar J. P., Tsao S. C., Hwua W., Sutton B. P., Liang Z. P., Purcell T. J., 2008. Accelerating advanced MRI reconstructions on GPUs. Journal of Parallel and Distributed Computing 68, 1307-1318.
- Fan Z, Mei X., 2008. Real-time Medical Image Volume Rendering Based on GPU Accelerated Method.. International Symposium on Computational Intelligence and Design, 30-33.
- Luebke D., 2008. CUDA: Scalable Parallel Programming For High-Performance Scientific Computing. 5th IEEE International Symposium, 836 - 838.
- Khronos OpenCL Working Group, 2010. The OpenCL Specification, version 1.1.
- Xu F., Mueller K., 2007. Real-Time 3D Computed Tomographic Reconstruction Using Commodity Graphics Hardware. Physics in Medicine and Biology 52, 3405-3417.
- Zhao Y., Cui X., Cheng Y., 2009. High-Performance and Real-Time Volume Rendering in CUDA. In BMEI 7809. 2nd International Conference on Biomedical Engineering and Informatics.
- Ruiz de Miras J., Navas J., Villoslada P. and Esteban F. J., 2011. UJA-3DFD: A Program to Compute the 3D Fractal Dimension from MRI Data. Computers Methods and Programs in Biomedicine, 104, 452 - 460.
- Palágyi K., Kuba A., 1999. A Parallel 3D 12-Subiteration Thinning Algorithm. Graphical Models and Image Processing 61, 199-221.
Paper Citation
in Harvard Style
Jiménez J., M. López A., J. Esteban F., Villoslada P., Navas J. and Ruiz de Miras J. (2012). A SOFTWARE PLATFORM TO ANALYZE MR IMAGES BASED ON 3D FRACTAL DIMENSION - Application in Neurodegenerative Diseases . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 554-559. DOI: 10.5220/0003892505540559
in Bibtex Style
@conference{miad12,
author={J. Jiménez and A. M. López and F. J. Esteban and P. Villoslada and J. Navas and J. Ruiz de Miras},
title={A SOFTWARE PLATFORM TO ANALYZE MR IMAGES BASED ON 3D FRACTAL DIMENSION - Application in Neurodegenerative Diseases},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012)},
year={2012},
pages={554-559},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003892505540559},
isbn={978-989-8425-89-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012)
TI - A SOFTWARE PLATFORM TO ANALYZE MR IMAGES BASED ON 3D FRACTAL DIMENSION - Application in Neurodegenerative Diseases
SN - 978-989-8425-89-8
AU - Jiménez J.
AU - M. López A.
AU - J. Esteban F.
AU - Villoslada P.
AU - Navas J.
AU - Ruiz de Miras J.
PY - 2012
SP - 554
EP - 559
DO - 10.5220/0003892505540559