SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES
D. Bacciu, M. Broxvall, S. Coleman, M. Dragone, C. Gallicchio, C. Gennaro, R. Guzmán, R. Lopez, H. Lozano-Peiteado, A. Ray, A. Renteria, A. Saffiotti, C. Vairo
2012
Abstract
The most common use of wireless sensor networks (WSNs) is to collect environmental data from a specific area, and to channel it to a central processing node for on-line or off-line analysis. The WSN technology, however, can be used for much more ambitious goals. We claim that merging the concepts and technology of WSN with the concepts and technology of distributed robotics and multi-agent systems can open new ways to design systems able to provide intelligent services in our homes and working places. We also claim that endowing these systems with learning capabilities can greatly increase their viability and acceptability, by simplifying design, customization and adaptation to changing user needs. To support these claims, we illustrate our architecture for an adaptive robotic ecology, named RUBICON, consisting of a network of sensors, effectors and mobile robots.
References
- Amato, G., Chessa, S., and Vairo, C. (2010). Mad-wise: A distributed stream management system for wireless sensor networks. In Software Practice & Experience, 40 (5): 431 - 451.
- Amato, G., Chessa, S., and Vairo, C. (2010). Mad-wise: A distributed stream management system for wireless sensor networks. In Software Practice & Experience, 40 (5): 431 - 451.
- Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., and Barsocchi, P. (2011). Predicting user movements in heterogeneous indoor environments by reservoir computing. In Bhatt, M., Guesgen, H. W., , and Augusto, J. C., editors, Proc. of the IJCAI Workshop STAMI 2011, pages 1-6.
- Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., and Barsocchi, P. (2011). Predicting user movements in heterogeneous indoor environments by reservoir computing. In Bhatt, M., Guesgen, H. W., , and Augusto, J. C., editors, Proc. of the IJCAI Workshop STAMI 2011, pages 1-6.
- Busoniu, L., Babuska, R., and De Schutte, B. (2009). A comprehensive survey of multi-agent reinforcement learning. In IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 2, pages 156-172.
- Busoniu, L., Babuska, R., and De Schutte, B. (2009). A comprehensive survey of multi-agent reinforcement learning. In IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 2, pages 156-172.
- Gallicchio, C., Micheli, A., Barsocchi, P., and Chessa, S. (2011). User movements forecasting by reservoir computing using signal streams produced by moteclass sensors. In To Appear in Proc. of Mobilight 2011. Springer-Verlag.
- Gallicchio, C., Micheli, A., Barsocchi, P., and Chessa, S. (2011). User movements forecasting by reservoir computing using signal streams produced by moteclass sensors. In To Appear in Proc. of Mobilight 2011. Springer-Verlag.
- Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 2nd edition.
- Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 2nd edition.
- Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667):78-80.
- Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667):78-80.
- Leng, G., Prasad, G., and McGinnity, T. M. (2004). An online algorithm for creating self-organizing fuzzy neural networks. In Neural Networks, volume 17, pages 1477-1493.
- Leng, G., Prasad, G., and McGinnity, T. M. (2004). An online algorithm for creating self-organizing fuzzy neural networks. In Neural Networks, volume 17, pages 1477-1493.
- Mannella, F., Mirolli, M., and Baldassarre, G. (2012). Brain mechanisms underlying learning of habits and goaldriven behaviour: A computational model of devaluation experiments tested with a simulated rat. In In Tosh, C. (ed.), Neural Network Models. Cambridge University Press, In Press.
- Mannella, F., Mirolli, M., and Baldassarre, G. (2012). Brain mechanisms underlying learning of habits and goaldriven behaviour: A computational model of devaluation experiments tested with a simulated rat. In In Tosh, C. (ed.), Neural Network Models. Cambridge University Press, In Press.
- Moustapha, A. and Selmic, R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Trans. Instrum. Meas., 57(5):981 -988.
- Moustapha, A. and Selmic, R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Trans. Instrum. Meas., 57(5):981 -988.
- Muldoon, C., O Hare, G., and O Grady, M. (2006). Afme: An agent platform for resource constrained devices. In Proceedings of the ESAW 2006.
- Muldoon, C., O Hare, G., and O Grady, M. (2006). Afme: An agent platform for resource constrained devices. In Proceedings of the ESAW 2006.
- Pecora, F. and Cirillo, M. (2009). A constraint-based approach for plan management in intelligent environments. In Proc. of the Scheduling and Planning Applications Workshop at ICAPS09.
- Pecora, F. and Cirillo, M. (2009). A constraint-based approach for plan management in intelligent environments. In Proc. of the Scheduling and Planning Applications Workshop at ICAPS09.
- Prasad, G., Leng, G., McGinnity, T., and Coyle, D. (2010). On-line identification of self-organizing fuzzy neural networks for modelling time-varying complex systems. In Evolving Intelligent Systems: Methodology and Applications, John Wiley & Sons., pages 256-296.
- Prasad, G., Leng, G., McGinnity, T., and Coyle, D. (2010). On-line identification of self-organizing fuzzy neural networks for modelling time-varying complex systems. In Evolving Intelligent Systems: Methodology and Applications, John Wiley & Sons., pages 256-296.
- Saffiotti, A. and Broxvall, M. (2007). A middleware for ecologies of robotic devices. In Proc. Of the Int. Conf. on Robot Communication and Coordination (RoboComm), pp. 16-22.
- Saffiotti, A. and Broxvall, M. (2007). A middleware for ecologies of robotic devices. In Proc. Of the Int. Conf. on Robot Communication and Coordination (RoboComm), pp. 16-22.
- Sen, S. and Weiss, G. (1999). Learning in multiagent systems. In Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, ch. 6, pp. 259-298.
- Sen, S. and Weiss, G. (1999). Learning in multiagent systems. In Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, ch. 6, pp. 259-298.
Paper Citation
in Harvard Style
Bacciu D., Broxvall M., Coleman S., Dragone M., Gallicchio C., Gennaro C., Guzmán R., Lopez R., Lozano-Peiteado H., Ray A., Renteria A., Saffiotti A. and Vairo C. (2012). SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES . In Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-8565-01-3, pages 99-103. DOI: 10.5220/0003905100990103
in Harvard Style
Bacciu D., Broxvall M., Coleman S., Dragone M., Gallicchio C., Gennaro C., Guzmán R., Lopez R., Lozano-Peiteado H., Ray A., Renteria A., Saffiotti A. and Vairo C. (2012). SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES . In Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-8565-01-3, pages 99-103. DOI: 10.5220/0003905100990103
in Bibtex Style
@conference{sensornets12,
author={D. Bacciu and M. Broxvall and S. Coleman and M. Dragone and C. Gallicchio and C. Gennaro and R. Guzmán and R. Lopez and H. Lozano-Peiteado and A. Ray and A. Renteria and A. Saffiotti and C. Vairo},
title={SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES},
booktitle={Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2012},
pages={99-103},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003905100990103},
isbn={978-989-8565-01-3},
}
in Bibtex Style
@conference{sensornets12,
author={D. Bacciu and M. Broxvall and S. Coleman and M. Dragone and C. Gallicchio and C. Gennaro and R. Guzmán and R. Lopez and H. Lozano-Peiteado and A. Ray and A. Renteria and A. Saffiotti and C. Vairo},
title={SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES},
booktitle={Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2012},
pages={99-103},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003905100990103},
isbn={978-989-8565-01-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES
SN - 978-989-8565-01-3
AU - Bacciu D.
AU - Broxvall M.
AU - Coleman S.
AU - Dragone M.
AU - Gallicchio C.
AU - Gennaro C.
AU - Guzmán R.
AU - Lopez R.
AU - Lozano-Peiteado H.
AU - Ray A.
AU - Renteria A.
AU - Saffiotti A.
AU - Vairo C.
PY - 2012
SP - 99
EP - 103
DO - 10.5220/0003905100990103
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - SELF-SUSTAINING LEARNING FOR ROBOTIC ECOLOGIES
SN - 978-989-8565-01-3
AU - Bacciu D.
AU - Broxvall M.
AU - Coleman S.
AU - Dragone M.
AU - Gallicchio C.
AU - Gennaro C.
AU - Guzmán R.
AU - Lopez R.
AU - Lozano-Peiteado H.
AU - Ray A.
AU - Renteria A.
AU - Saffiotti A.
AU - Vairo C.
PY - 2012
SP - 99
EP - 103
DO - 10.5220/0003905100990103