PROVIDING FACILITIES FOR THE USE OF TDD IN PRACTICE

Vinicius Pereira and Antonio Francisco do Prado
Department of Computing, Federal University of Sao Carlos, Sao Carlos, Brazil

Keywords:
Test, User Acceptance Testing, Scrum.

Abstract:

Functional Testing, Test Case Generation, Code Transformation, Test Driven Development, User Stories,

In this paper we describe an approach that provides a way to facilitate the use of TDD in the practice of

Web application development, independent of the development process used. As an example, it is presented
a way of integrating the functional testing (on level of acceptance) in the Scrum process. The functional tests
are constructed to test the User Stories, which represent the software requirements specified in the Product
Backlog according to the Scrum. The approach is divided into three stages: Tests Specification, Functional
Tests Construction and Tests Driven Implementation. An example of social application illustrates the use of

the proposed approach.

1 INTRODUCTION

In the context of software engineering, software test-
ing is considered a priority activity (Bertolino, 2007).
This is due to the fact that a defect found when the
software is in production may have a much higher cost
to fix than if the same were found in the early stages
(Perry, 2006).

In this paper we present an approach that aims to
provide facilities for the practical use of Test Driven
Development (Beck, 2003) in software development.
To exemplify the use of this approach is shown how
to integrate functional testing with the Scrum pro-
cess, aiming to combine the advantages of agility and
knowledge of this agile method to the of Tests which
aim to reduce the mistakes of inconsistent implemen-
tations with the requirements specified for the soft-
ware.

The proposed approach, which emerged during
the RAMBUS process improvements (Pereira and
do Prado, 2011) (a variation of Scrum), of the same
authors, aims to improve software quality without los-
ing the agility of the Scrum. Based on the User Sto-
ries (Cohn, 2004), the integration of functional testing
helps the development team on the task of implement-
ing the software in a manner more consistent with
their requirements. For the tests to simulate the func-
tionality of the software, a test specification language
was developed and a converter was built to generate,
based on these specifications, the test code in the tar-
get language of the software implementation.

242 Pereira V. and Francisco do Prado A..
PROVIDING FACILITIES FOR THE USE OF TDD IN PRACTICE.
DOI: 10.5220/0003906302420245

In the following section we present the proposed
approach. And the section 3 presents the conclusions
and future work.

2 THE PROPOSED APPROACH

The explanation of the proposed approach shows how
to integrate its three stages with the Scrum process
to create functional tests. The three stages are: Test
Specification, Functional Test Construction and Test
Driven Implemantation. These stages are present in
each Scrum Sprint, as shown in Figure 1, and are per-
formed for each of the User Story.

The approach is based on the TDD concepts of “to
create a test, check its failure, write the code for the
test to be approved” and the concept to develop driven
by the expected behavior of software. To assist the un-
derstanding and the inter-relationship of these three
stages, Figure 2 shows in a SADT diagram (Struc-
tured Analysis and Design Technique) (Ross, 1977)
the inputs and the outputs of each stage, as well as
their respective mechanisms and controls.

In the following, the stages of the approach are
presented in more detail. To facilitate understanding,
it is used as an example the development of an ap-
plication domain of social network. This application
integrates Facebook! and Google+? features and

Lhttps://www.facebook.com/
2https://plus.google.com/

In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 242-245

ISBN: 978-989-8565-08-2

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

PROVIDING FACILITIES FOR THE USE OF TDD IN PRACTICE

/ Daily /
Meeting

Sprint

Backlog
D
‘/ - v
Working increment
() of the software
Product
Backlog

Figure 1: Scrum and Functional Testing.

Syntax and semantics of the Tests

Specification Language (TSL)
User Story written in TSL
User Story
test task Tests
Specification .
Syntax and Semantics of
programming languages
Functional Test written in C# for the
business rule defined in the User Story
Text Editor
or IDE Functi | Tests
@& >.; Construction
Development Syntax and semantics of

Team programming and markup

languages

Story2CSharp
Converter
;! Business Rule
Development Tests Driven Implemented
Team Implementation
e ey P s
Other Complementary
Codes ?
Visual TSL DLL

Studio
L

=S >=
Tests
wﬁ& frameworks
N
Development >
Team

Figure 2: SADT of the proposed approach.

aims to be a social networking site with a focus on minor modifications made to the structure of the User

build and reflect social networks and social relations
between people. The functional tests created in this
example are in the acceptance testing level.

Tests Specification: at this stage, based on the Story
Cards and Mockups, the development team should
write the User Story using the Test Specification Lan-
guage (TSL).

Created by the authors, this language has some

Story provided by Mike Cohn (Cohn, 2004), towards
implementing in C# (the chosen target language). In-
stead of double quotes (“), the symbol “$” was used
to reference identifiers (fields, variables, and buttons)
and braces (f g) were used to indicate strings. If
necessary, the TSL grammar can be easily modified,
making it more appropriate to specify the User Sto-
ries. The Figure 3 shows an example of an User Story
for a social network application defined using TSL.

243

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

Feature: New user registration
In order to use MySocial

As anew user

| want to register me

Scenario: Sign up
Given | go to the new user registration page
When I fill in Susername with {testuser}
And | fill in $email with {test@test.test}
And I fill in Suser_password with {secretpwd}
And | fill in § password_confirmation with {secretpwd}
And | press $create_my_account
Then | should be on the getting started page
And | should see {Welcome}
And | should see {Fill out your profile}
And | should see {Connect with cool people}
And | should see $Finished

Figure 3: User Story written in TSL.

Functional Tests Construction: in this second stage,
the development team uses the User Story written in
TSL created in the previous stage to create a business
rule instrumented with functional test. This stage is
aided by Story2CSharp Converter, which converts the
TSL for the C# language. This converter was devel-
oped by the authors to support the approach together
with the TSL.

Operationally, the development team copies the
contents of the User Story described in TSL (or
even write the contents) to the left screen of the
Story2CSharp Converter. The converter generates the
C# code in execution time and displays it on the right
screen. The Figure 4 shows the converter with a iter-
ation button created when needed. In this moment,
with the User Story being written in the converter
screen, the next line should begin with the keyword
“Given”. The Figure 5 shows the conversion result of
the User Story in Figure 3 to the functional test in C#.

= Story2CSharp Convenar

OutputSettings 7] Indentation Test Framework: [MSTest v | | Details Story

new Story("New user registration")
.InOrderTo("use MySocial")
.AsA("new user")
.IWant("to register me")

Feature: New user registration
In order to use MySecial

As a new user

I went to register me

-WithScenario("sign up")
-Execute();

Scenario: Sign up

=

Figure 4: The Story2CSharp Converter in action.

As shown in Figure 5, it was generated a test
class with the name indicating the use of the library
Story2CSharp and each story becomes a testable
method. It is important to note that although con-
verted to C#, the Story is perfectly legible in order
to maintain a level of abstraction close to that offered
by TSL.

Next is created a variable Story which will con-
tain the information of the User Story. The contents
of each scenario is divided into methods that are de-
clared externally in relation to the testable method.

244

using System;
using Story2CSharp;
using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class Story2CSharpTestClass {
[TestMethod]
public void NewUserRegistration() {
new Story(”New user registration”)
JInOrderTo("use MySocial”)
AsA("new user”)
JWant("to register me”)

.WithScenario("Sign up”)
.Given(lGoToTheNewUserRegistrationPage)
When(IFillln_With_, “username”, “testuser”)

And(IFillin_With_, “email”, “test@test.test”)
And(IFillin_With_, “user_password’, “secret”)
And(IFillin_With_, “password_confirmation’, “secret”)
.And(IPress_, “Create_my_account”)
.Then(IShouldBeOnTheGettingStartedPage)

And(IShouldSee_, “Welcome”)
.And(IShouldSee_, “Fill out your profile”)
.And(IShouldSee_, “Connect with cool people”)
.And(IShouldSee_, “Finished”)

.Execute();

}

private void IGoToTheNewUserRegistrationPage()
{ throw new NotimplementedException(); }

private void IFillin_With_(string arg1, string arg2)
{ throw new NotimplementedException(); }

private void IPress_(string arg1)
{ throw new NotimplementedException(); }

private void IShouldBeOnTheGettingStartedPage()
{ throw new NotimplementedException(); }

private void IShouldSee_(string arg1)
{ throw new NotimplementedException(); }

}

Figure 5: User Story, of the Figure 3, as functional test in
CH#.

The name of each method is defined to indicate with
an underscore (L) where their attributes fit the name
for easier its reading. These methods are designed
with the goal of throwing an exception to indicate that
they have not yet been implemented. At the end of the
testable method, an internal function is called to exe-
cute the Story.

Thus, the development team builds the functional
test integrated with the User Story. Note that the
business logic is not automatically generated. Only
the structure of the test is generated, leaving the
writing of the logic to the next stage of the approach.

Tests Driven Implementation: in this last stage, the
functional test generated in the previous stage should
guide the coding of business logic, following the prin-
ciples of BDD (North, 2006). Other codes may have
been created automatically or not, to support this
stage of the approach, such as the creation of CRUD
(Kilov, 1998) and the database.

In the Visual Studio environment, the approach is
supported by VS Unit Test and NUnit testing frame-
works as well the library Story2CSharp. The devel-
opment team includes the code generated by the con-
verter in the project created in Visual Studio.

PROVIDING FACILITIES FOR THE USE OF TDD IN PRACTICE

Once the functional test was constructed, the de-
velopment team can execute it and analyze its results.
Because the code has just been generated, the most
likely outcome is that the functional test is “incon-
clusive”, since the methods of each scenario are yet
structures that were not implemented. The Figure 6
shows this result.

NewlserRegistration : Inconclusive

Story is New user registration
In order to use MySocial
As a new user
I want to register me
Scenario: Sign up
Given I go to the new user registration page
When I fill in Username with testuser => Pendimg !!
And I £ill in Email with test@test.test => Pending !!
And I fill in user password with secret => Pending !!
And I fill in Password confirmation with secret => Pending !!
2And I press Create my account =» Pending 1!
Then I should be on the getting started page => Pending !!
2And I should see Welcome => Pending !!
2nd I should see Fill out your profile => Pending !!
Znd I should see Connect with cool people = Pending !!
2nd I should see Finished => Pending 1!

Figure 6: Result showing that the functional test was incon-
clusive, due to pending methods.

=> Pending"’

Following, the development team writes the code
to test the business logic of the User Story so that its
steps accuse failures. To correct the failures, the de-
velopment team implements the business logic for the
steps that be approved in the tests.

The use of this approach does not preclude the use
of unit testing. The use of these tests help to com-
plement the evaluation of the User Story. A way to
integrate the unit testing with functional testing can
be found in the Chelimsky’s book (Chelimsky et al.,
2010).

The final result is the business logic implemented,
functionally tested, according to the requirements
specified in the User Story. Similarly the approach
is repeated for the others User Stories in each Scrum
Sprint.

3 CONCLUSIONS

The proposed approach helps in software creation by
guiding the development based on the behavior ex-
pected by the user. This is possible through the im-
plementation of the User Stories written in a Tests
Specification Language (TSL), which has a high level
of abstraction. These stories are the basis of the ap-
proach, describing each business rule as a Story Card
and ending as Functional Tests. These tests are in the
acceptance testing level and are executed to guide the
implementation. This approach can be used by any
development process, regardless of whether or not
Agile. It is only necessary that the development team
makes use of concepts and techniques of Test Driven

Development.
The approach was tested in social networking appli-
cations, as the presented on this paper. Two tools were
developed to support the approach: the Tests Specifi-
cation Language (TSL), written as a DLL to be used
with the Visual Studio and the Story2CSharp Con-
verter, which uses the DLL and assists in achieving
the functional test from the User Story written in TSL.
Future work includes case studies to test the pro-
posed approach. Also includes the improvement of
tools for importing directly from C# code for Visual
Studio and the realization of new case studies in other
fields of application.

ACKNOWLEDGEMENTS

The authors would like to thanks to the people from
their laboratory for their support and cooperation.
Thanks also to The National Council for Scientific
and Technological Development (CNPq) for financial
support which enabled this study.

REFERENCES

Beck, K. (2003). Test-Driven Development by Example.
Addison-Wesley, first edition.

Bertolino, A. (2007). Software testing research: Achieve-
ments, challenges, dreams. In Future of Software En-
gineering, pages 85 — 103, Washington, DC, USA.

Chelimsky, D., Astels, D., Dennis, Z., Hellesoy, A.,
Helmkamp, B., and North, D. (2010). The RSpec
Book: Behaviour-Driven Development with RSpec,
Cucumber, and Friends. Pragmatic Bookshelf, beta
edition.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison-Wesley Professional, first edi-
tion.

Kilov, H. (1998). Business Specifications: The Key to Suc-
cessful Software Engineering. Prentice Hall, first edi-
tion.

North, D. (2006). Introducing Behavior Driven Develop-
ment. Better Software, first edition.

Pereira, V. and do Prado, A. F. (2011). Rambus: An agile
process for developing web applications. Journal of
Intelligent Computing, volume 2:42-53.

Perry, W. (2006). Effective methods for software testing.
John Wiley and Sons, third edition.

Ross, D. T. (1977). Structured Analysis: A Language for
Communicating ldeas, pages 16-34. IEEE Transac-
tions on Software Engineering 3(1).

245

