ACKNOWLEDGEMENTS
The authors would like to thank current and previous
members of the Program Improvement Commitee S.
Oktug, M. Gokmen, S. S. Talay N. Erdogan and B.
Kantarci for their support.
REFERENCES
Butcher, D. F. and Muth, W. A. (1985). Predicting per-
formance in an introductory computer science course.
Commun. ACM, 28:263–268.
Campbell, P. F. and McCabe, G. P. (1984). Predicting
the success of freshmen in a computer science major.
Commun. ACM, 27:1108–1113.
Cetintas, S., Si, L., Xin, Y. P., and Hord, C. (2010). Pre-
dicting correctness of problem solving in its with a
temporal collaborative filtering approach. Intelligent
Tutoring Systems, 6094:15–24.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.
Corbett, A. T. and Anderson, J. R. (1994). Knowledge trac-
ing: Modeling the acquisition of procedural knowl-
edge. User Modeling and User-Adapted Interaction,
4:253–278. 10.1007/BF01099821.
Dekker, G., Pechenizkiy, M., and Vleeshouwers, J. (2009).
Predicting students drop out: A case study. In
EDM’09, pages 41–50.
Felder, R. M., Engineering, D. O. C., Mohr, P. H., Engi-
neering, C. O., and Dietz, E. J. (1993). A longitudinal
study of engineering student performance and reten-
tion. i. success and failure in the introductory course.
J. Engr. Education, pages 15–21.
Genkin, A., Lewis, D. D., and Madigan, D. (2007). Large-
scale bayesian logistic regression for text categoriza-
tion. Technometrics, 49(3):291–304.
Gulgezen, G., Cataltepe, Z., and Yu, L. (2009). Stable
and Accurate Feature Selection. In Buntine, W., Gro-
belnik, M., Mladeni
´
c, D., and Shawe-Taylor, J., edi-
tors, Machine Learning and Knowledge Discovery in
Databases, volume 5781, chapter 47, pages 455–468.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Guyon, I. and Elisseeff, A. (2003). An introduction to
variable and feature selection. J. Mach. Learn. Res.,
3:1157–1182.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. (2009). The weka data mining soft-
ware: An update. SIGKDD Explorations, 11(1).
Hosmer, D. and Lemeshow, S. (2000). Applied logistic re-
gression. Wiley series in probability and statistics:
Texts and references section. Wiley.
Marquez-Vera, C., Romero, C., and Ventura, S. (2011). Pre-
dicting school failure using data mining. In Pech-
enizkiy, M., Calders, T., Conati, C., Ventura, S.,
Romero, C., and Stamper, J. C., editors, EDM, pages
271–276. www.educationaldatamining.org.
Oktug, S. (2007). Assessment of program outcomes by us-
ing pomas. In Proc. of International Conference on
Engineering Education2007, Coimbra, Portugal.
Pardos, Z. A. and Heffernan, N. T. (2011). Using hmms and
bagged decision trees to leverage rich features of user
and skill from an intelligent tutoring system dataset.
Science, (2010).
Peng, H., Long, F., and Ding, C. (2005). Feature se-
lection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(8):1226 –1238.
Romero, C. and Ventura, S. (2010). Educational data min-
ing: A review of the state of the art. Systems, Man,
and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 40(6):601 –618.
Rubin, D. B. (1980). Using empirical bayes techniques in
the law school validity studies. Journal of the Ameri-
can Statistical Association, 75(372):pp. 801–816.
Thai-Nghe, N., Busche, A., and Schmidt-Thieme, L.
(2009). Improving academic performance prediction
by dealing with class imbalance. In Intelligent Sys-
tems Design and Applications, 2009. ISDA ’09. Ninth
International Conference on, pages 878 –883.
Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., and
Schmidt-Thieme, L. (2010). Recommender system
for predicting student performance. Procedia Com-
puter Science, 1(2):2811–2819.
Vapnik, V. (2000). The nature of statistical learning the-
ory. Statistics for engineering and information sci-
ence. Springer.
Yu, H.-F., Lo, H.-Y., Hsieh, H.-P., Lou, J.-K., Mckenzie,
T. G., Chang, P. T., Po, C., Wang, C.-Y., Huang, Y.-H.,
Ruan, Y.-X., and et al. (2010). Feature engineering
and classifier ensemble for kdd cup 2010. Science,
pages 1–12.
IMPROVINGCOURSESUCCESSPREDICTIONUSINGABETCOURSEOUTCOMESANDGRADES
229