USING SEMANTIC ANNOTATIONS OF WEB SERVICES FOR ANALYZING INFORMATION DIFFUSION IN THE DEEP WEB

Shahab Mokarizadeh, Peep Küngas, Mihhail Matskin

2012

Abstract

Since Web services represent a fragment of the Deep Web, Web service interface descriptions reflect the content types available in the DeepWeb. Therefore semantic annotations of theseWeb service interfaces, after using them to link services to services networks, allow analysis of the structure of the DeepWeb. In this work, we investigate information diffusion, as one of highlighted Deep Web research directions, among networks of Web services. We present a model for analyzing information diffusion between both individual service providers and entire service industries. The proposed model is evaluated based on set of public Web services interface description harvested from public registries. The model indicates high potential of the proposed method in understanding the hidden structure of the Deep Web and interactions between individual service providers or service industries.

References

  1. Bergman, M. K. (2001). The deep web: Surfacing hidden value. World Wide Web Internet And Web Information Systems, 7(1):1-17.
  2. Cha, M., Mislove, A., and Gummadi, K. P. (2009). A measurement-driven analysis of information propagation in the flickr social network. In Proceedings of the 18th international conference on World Wide Web, WWW 7809, pages 721-730, USA. ACM.
  3. Crasso, M., Zunino, A., and Campo, M. (2008). Awsc: An approach to web service classification based on machine learning techniques. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 12(37):25-36.
  4. Cui, L. Y., Kumara, S., Yoo, J. J.-W., and Cavdur, F. (2009). Large-scale network decomposition and mathematical programming based web service composition. In Proceedings of the 2009 IEEE Conference on Commerce and Enterprise Computing, pages 511-514.
  5. Geller, J., Chun, S. A., and Jung, Y. (2008). Toward the semantic deep web. Computer, 41(9):95 -97.
  6. Heß, A. and Kushmerick, N. (2003). Learning to attach semantic metadata to web services. In ISWC2003, pages 258-273. Springer.
  7. Mokarizadeh, S., Küngas, P., and Matskin, M. (2010). Ontology learning for cost-effective large-scale semantic annotation of web service interfaces. In EKAW, pages 401-410.
  8. Mokarizadeh, S., Küngas, P., and Matskin, M. (2011). Evaluation of a semi-automated semantic annotation approach for bootstrapping the analysis of largescale web service networks. In Web Intelligence and Intelligent Agent Technology, pages 388-395. IEEE/WIC/ACM.
  9. Shi, X., Tseng, B. L., and Adamic, L. A. (2009). Information diffusion in computer science citation networks. CoRR, abs/0905.2636.
  10. Teng, W.-G., Pai, W.-M., and Chen, K.-C. (2009). Exploring information diffusion patterns with social relationships in the blogosphere. In ICCI 7809, pages 422-427.
Download


Paper Citation


in Harvard Style

Mokarizadeh S., Küngas P. and Matskin M. (2012). USING SEMANTIC ANNOTATIONS OF WEB SERVICES FOR ANALYZING INFORMATION DIFFUSION IN THE DEEP WEB . In Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-08-2, pages 110-115. DOI: 10.5220/0003931801100115


in Bibtex Style

@conference{webist12,
author={Shahab Mokarizadeh and Peep Küngas and Mihhail Matskin},
title={USING SEMANTIC ANNOTATIONS OF WEB SERVICES FOR ANALYZING INFORMATION DIFFUSION IN THE DEEP WEB},
booktitle={Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2012},
pages={110-115},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003931801100115},
isbn={978-989-8565-08-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - USING SEMANTIC ANNOTATIONS OF WEB SERVICES FOR ANALYZING INFORMATION DIFFUSION IN THE DEEP WEB
SN - 978-989-8565-08-2
AU - Mokarizadeh S.
AU - Küngas P.
AU - Matskin M.
PY - 2012
SP - 110
EP - 115
DO - 10.5220/0003931801100115