The distorting factor e
j
2πδ
f
τ
N
does not depend on the
symbol extension factor I and differential ES-OFDM
is therefore, by approximation, insensitive to ex-
tended symbol lengths with respect to frequency off-
sets.
6 CONCLUSIONS
By extending symbols, differential ES-OFDM can
achieve acceptable BERs at low SNR. For AWGN
and frequency selective Rayleigh fading channels, the
SNR requirement at the receiver to achieve acceptable
BERs is lowered when extending symbols (and inher-
ently, lowering the data rate). In case of fixed channel
conditions, doubling the symbol length reduces the
required radiated power level at the transmitter with
approximately 2.1 dB. This way power consumption
within the PA is reduced. When extending symbols,
the computational load per unit time reduces almost
proportionally for the transmitter. We thus satisfy the
requirement that the power consumed in both the PA
and the radio modem of the transmitter should be re-
duced.
The computational load at the receiver slightly in-
creases when extendingsymbols if we consider the re-
ceiver model presented in Fig. 1. However,as already
indicated in our analysis in Section 4, the receiver ar-
chitecture can also be changed into a crosscorrelation
followed by an FFT. In (Kokkeler and Smit, 2011),
it is shown that such a receiver architecture can be
simplified by reducing the resolution of the Analog-
to-Digital Converters giving ample opportunities to
lower the power consumption of the receiver. This
is still a subject of further research.
REFERENCES
Carroll, A. and Heiser, G. (2010). An analysis of power
consumption in a smartphone. In Proceedings of
the 2010 USENIX conference on USENIX annual
technical conference, USENIXATC’10, pages 21–21,
Berkeley, CA, USA. USENIX Association.
Gaffney, B., Fagan, A., and Rickard, S. (2005). Upper
bound on the probability of error for repetition mb-
ofdm in the rayleigh fading channel. Ultra-Wideband,
2005. ICU 2005. 2005 IEEE International Conference
on, pages 4 pp.–.
Harada, M., Yamamoto, T., Okada, H., Katayama, M., and
Ogawa, A. (2007). Reducing peak power for coded
ofdm systems by multiple symbol mapping. Electron-
ics and Communications in Japan (Part III: Funda-
mental Electronic Science), 90(3):67–76.
Haykin, S. (2001). Communication Systems. John Wiley &
Sons, Inc., fourth edition.
Kokkeler, A. and Smit, G. (2011). A correlating receiver for
ofdm at low snr. In IEEE 73rd Vehicular Technology
Conference: VTC2011 - Spring.
Lott, M. (1999). Comparision of frequency and time do-
main differential modulation in an ofdm system for
wireless atm. Vehicular Technology Conference, 1999
IEEE 49th, 2:877–883 vol.2.
Maeda, N., Atarashi, H., Abeta, S., and Sawahashi, M.
(2002). Throughput comparison between vsf-ofcdm
and ofdm considering effect of sectorization in for-
ward link broadband packet wireless access. Vehic-
ular Technology Conference, 2002. Proceedings. VTC
2002-Fall. 2002 IEEE 56th, 1:47–51 vol.1.
Mahesri, A. and Vardhan, V. (2005). Power consumption
breakdown on a modern laptop. 3471:165–180.
Medina, L. and Kobayashi, H. (2000). Proposal of ofdm
system with data repetition. Vehicular Technology
Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd,
1:352–357 vol.1.
Miller, L. and Lee, J. (1998). Ber expressions for differen-
tially detected pi;/4 dqpsk modulation. Communica-
tions, IEEE Transactions on, 46(1):71 –81.
Perrucci, G., Fitzek, H. F., and Widmer, J. (2011). Survey
on energy consumption entities on smartphone plat-
form. In IEEE 73rd Vehicular Technology Confer-
ence: VTC2011 - Spring.
Rantala, E., Karppanen, A., Granlund, S., and Sarolahti, P.
(2009). Modeling energy efficiency in wireless inter-
net communication. In Proceedings of the 1st ACM
workshop on Networking, systems, and applications
for mobile handhelds, MobiHeld ’09, pages 67–68,
New York, NY, USA. ACM.
Simon, M. and Divsalar, D. (1992). On the implementa-
tion and performance of single and double differential
detection schemes. Communications, IEEE Transac-
tions on, 40(2):278–291.
Tan, P. and Beaulieu, N. (2007a). Accurate ber performance
comparison of frequency domain and time domain
π/4-dqpsk ofdm systems. Electrical and Computer
Engineering, 2007. CCECE 2007. Canadian Confer-
ence on, pages 195 –201.
Tan, P. and Beaulieu, N. (2007b). Precise ber analysis
of π/4-dqpsk ofdm with carrier frequency offset over
frequency selective fast fading channels. Wireless
Communications, IEEE Transactions on, 6(10):3770
–3780.
APPENDIX A
The expressions given in section 3 describe a differ-
ential ES-OFDM receiver using a so-called FX corre-
lator. In this appendix, we will rearrange the expres-
sions in such way that the receiver describes an XF
correlator. Using the shift theorem and (8), (9) can be
EXTENDINGOFDMSYMBOLSTOREDUCEPOWERCONSUMPTION
261