Particle Filtering for Position based 6DOF Visual Servoing in Industrial Environments
Aitor Ibarguren, José María Martínez-Otzeta, Iñaki Maurtua
2012
Abstract
Visual servoing allows the introduction of robotic manipulation in dynamic and uncontrolled environments. This paper presents a position-based visual servoing algorithm using particle filtering. The objective is the grasping of objects using the 6 degrees of freedom of the robot manipulator (position and orientation) in non-automated industrial environments using monocular vision. A particle filter has been added to the position-based visual servoing algorithm to deal with the different noise sources of those industrial environments (metallic nature of the objects, dirt or illumination problems…). This addition allows dealing with those uncertainties and being able to recover from errors in the grasping process. Experiments performed in the real industrial scenario of ROBOFOOT project showed accurate grasping and high level of stability in the visual servoing process.
References
- A. Doucet, N. De Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo methods in practice. SpringerVerlag.
- Han, S.-H., Seo, W., Yoon, K., and Lee, M.-H. (1999). Realtime control of an industrial robot using image-based visual servoing. In Intelligent Robots and Systems, 1999. IROS 7899. Proceedings. 1999 IEEE/RSJ International Conference on, volume 3, pages 1762 -1767 vol.3.
- Hutchinson, S., Hager, G., and Corke, P. (1996). A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on, 12(5):651 -670.
- Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3):401 - 422.
- Kotecha, J. and Djuric, P. (2003). Gaussian particle filtering. Signal Processing, IEEE Transactions on, 51(10):2592 - 2601.
- Lippiello, V., Siciliano, B., and Villani, L. (2007). Positionbased visual servoing in industrial multirobot cells using a hybrid camera configuration. Robotics, IEEE Transactions on, 23(1):73 -86.
- Liu, J., Chen, R., and Logvinenko, T. (2000). A theoretical framework for sequential importance sampling and resampling. Sequential Monte Carlo Methods in Practice, pages 1-24.
- Nomura, H. and Naito, T. (2000). Integrated visual servoing system to grasp industrial parts moving on conveyer by controlling 6dof arm. In Systems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 3, pages 1768 -1775 vol.3.
- Weiss, L., Sanderson, A. C., and Neuman, C. P. (1987). Dynamic sensor-based control of robots with visual feedback. IEEE Journal on Robotics and Automation, RA-3(5).
Paper Citation
in Harvard Style
Ibarguren A., Martínez-Otzeta J. and Maurtua I. (2012). Particle Filtering for Position based 6DOF Visual Servoing in Industrial Environments . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 161-166. DOI: 10.5220/0003965501610166
in Bibtex Style
@conference{icinco12,
author={Aitor Ibarguren and José María Martínez-Otzeta and Iñaki Maurtua},
title={Particle Filtering for Position based 6DOF Visual Servoing in Industrial Environments},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={161-166},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003965501610166},
isbn={978-989-8565-22-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Particle Filtering for Position based 6DOF Visual Servoing in Industrial Environments
SN - 978-989-8565-22-8
AU - Ibarguren A.
AU - Martínez-Otzeta J.
AU - Maurtua I.
PY - 2012
SP - 161
EP - 166
DO - 10.5220/0003965501610166