Annual International Conference, pages 2713–2717,
New York, USA.
Bernstein, A., Kaufmann, E., B
¨
urki, C., and Klein, M.
(2005). How similar is it? Towards personalized si-
milarity measures in ontologies. In 7. Internationale
Tagung Wirtschaftsinformatik, pages 1347–1366.
Bin, S., Liying, F., Jianzhuo, Y., Pu, W., and Zhongcheng,
Z. (2009). Ontology-based measure of semantic simi-
larity between concepts. In World Congress on Soft-
ware Engineering, volume 2, pages 109–112.
Bouquet, P., Kuper, G., Scoz, M., and Zanobini, S. (2004).
Asking and answering semantic queries. In Proceed-
ings of Meaning Coordination and Negotiation Work-
shop (MCNW-04) in conjunction with International
Semantic Web Conference.
Burgess, C., Livesay, K., and Lund, K. (1998). Explorations
in context space: Words, sentences, discourse. Dis-
course Processes, 25(2-3):211–257.
Cord
`
ı, V., Lombardi, P., Martelli, M., and Mascardi, V.
(2005). An ontology-based similarity between sets of
concepts. In 6th Joint Workshop ”From Objects to
Agents”: Simulation and Formal Analysis of Complex
Systems, pages 16–21, Camerino,Italy.
Dong, H., Hussain, F. H., and Chang, E. (2009). A hybrid
concept similarity measure model for ontology envi-
ronment. In Proceedings of the Confederated Interna-
tional Workshops and Posters on the Move to Mean-
ingful Internet Systems, pages 848–857.
Eiter, T. and Mannila, H. (1997). Distance measures for
point sets and their computation. Journal Acta Infor-
matica, 34:103–133.
Haase, P., Siebes, R., and Harmelen, F. V. (2004). Peer se-
lection in peer-to-peer networks with semantic topolo-
gies. In International Conference on Semantics of a
Networked World: Semantics for Grid Databases.
HaCohen-Kerner, Y., , Gross, Z., and Masa, A. (2005). Au-
tomatic extraction and learning of keyphrases from
scientific articles. In Gelbukh, A., editor, Compu-
tational Linguistics and Intelligent Text Processing,
volume 3406 of Lecture Notes in Computer Science,
pages 657–669. Springer Berlin / Heidelberg.
Hulth, A. (2003). Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of
the 2003 conference on Empirical methods in nat-
ural language processing, EMNLP ’03, pages 216–
223, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Jiang, J. and Conrath, W. (1997). Semantic similarity based
on corpus statistics and lexical taxonomy. In Proceed-
ings of International Conference Research on Compu-
tational Linguistics, pages 19–33, Taiwan.
Landauer, T. K., Foltz, P. W., and Laham, D. (1998a). In-
troduction to latent semantic analysis. Discourse Pro-
cesses, 25(2-3):259–284.
Landauer, T. K., Laham, D., and Foltz, P. (1998b). Learning
human-like knowledge by singular value decomposi-
tion: A progress report. In Advances in Neural In-
formation Processing Systems 10, pages 45–51. MIT
Press.
Leacock, C. and Chodorow, M. (1998). Combining Local
Context and WordNet Similarity for Word Sense Iden-
tification, pages 305–332. In C. Fellbaum (Ed.), MIT
Press.
Lee, J. H., Kim, M. H., and Lee”, Y. J. (1993). Information
retrieval based on conceptual distance in IS-A hierar-
chies. Journal of Documentation, 49(2):188–207.
Lee, W. N., Shah, N., Sundlass, K., and Musen, M.
(2008). Comparison of ontology-based semantic-
similarity measures. In AMIA Annual Symposium Pro-
ceedings, pages 384–388.
Li, Y., Bandar, Z. A., and McLean, D. (2003). An approach
for measuring semantic similarity between words us-
ing multiple information sources. IEEE Transactions
on Knowledge and Data Engineering, 15(4).
Li, Y., McLean, D., Bandar, Z. A., O’Shea, J. D., and
Crockett, K. (2006). Sentence similarity based on se-
mantic nets and corpus statistics. IEEE Transactions
on Knowledge and Data Engineering, 18(8):1138–
1150.
Lin, D. (1998). An information-theoretic definition of simi-
larity. In Proceedings of the 15th International Con-
ference on Machine Learning, pages 296–304.
Marcel, P. and Negre, E. (2011). A survey of query recom-
mendation techniques for data warehouse exploration.
7
`
emes Journ
´
ees Francophones sur les Entrep
ˆ
ots de
Donn
´
ees et l’Analyse en ligne (EDA), B-7.
Oliva, J., Serrano, J. I., del Castillo, M. D., and Iglesias, A.
(2011). Sysmss: A syntax-based measure for short-
text semantic similarity. Data and Knowledge Engi-
neering, 70:390–405.
O’Shea, J., Bandar, Z., Crockett, K., and McLean, D.
(2010). Benchmarking short text semantic similarity.
International Journal of Intelligent Information and
Database Systems, 4(2):103 – 120.
Rada, R., Mili, H., Bicknell, E., and Blettner, M. (1989).
Development and application of a metric on semantic
nets. IEEE Transactions on Systems, Man, and Cyber-
netics, 19(1):17–30.
Resnik, P. (1995). Using information content to evaluate
semantic similarity in a taxonomy. In Proceedings of
IJCAI-95, pages 448–453, Montreal, Canada.
Resnik, P. (1999). Semantic similarity in a taxonomy:
An information-based measure and its application to
problems of ambiguity in natural language. Journal
or Artificial Intelligence Research, 11:95–130.
Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. In Information
Processing and Management, pages 513–523.
Turney, P. D. (2000). Learning algorithms for keyphrase
extraction. Information Retrieval, 2(4):303–336.
Wang, G. H., Wang, Y. D., and Guo, M. Z. (2006). An
ontology-based method for similarity calculation of
concepts in the semantic web. In Proceedings of the
5th International Conference on Machine Learning
and Cybernetics, pages 1538–1542, Dalian, China.
Wu, Z. and Palmer, M. (1994). Verb semantics and lexical
selection. In 32nd Annual Meeting of the Association
for Computational Linguistics, pages 133–138.
ICEIS2012-14thInternationalConferenceonEnterpriseInformationSystems
246