
Using Interpreted Runtime Models for Devising Adaptive User
Interfaces of Enterprise Applications

Pierre A. Akiki, Arosha K. Bandara and Yijun Yu
Computing Department, The Open University, Walton Hall, Milton Keynes, U.K.

Keywords: User Interfaces, Model Driven Engineering, Runtime Modelling, Enterprise Applications, Design Tools and
Techniques, Domain-specific Architectures, Software Architectures.

Abstract: Although proposed to accommodate new technologies and the continuous evolution of business processes
and business rules, current model-driven approaches do not meet the flexibility and dynamic needs of
feature-rich enterprise applications. This paper illustrates the use of interpreted runtime models instead of
static models or generative runtime models, i.e. those that depend on code generation. The benefit of
interpreting runtime models is illustrated in two enterprise user interface (UI) scenarios requiring adaptive
capabilities. Concerned with devising a tool-supported methodology to accommodate such advanced
adaptive user interface scenarios, we propose an adaptive UI architecture and the meta-model for such UIs.
We called our architecture Custom Enterprise Development Adaptive Architecture (CEDAR). The
applicability and performance of the proposed approach are evaluated by a case study.

1 INTRODUCTION

Modern businesses rely heavily on enterprise
software applications for automating their business
processes. The dependency on these applications
drives business owners to request even more features
from the software suppliers. It places a heavy
pressure on suppliers to provide the best possible
software quality, without increasing the cost. The
orientation towards generic enterprise applications
(ERP, CRM, etc.) is also being challenged by the
variation of demands amongst businesses and users.

Among various components of an enterprise
system, the user interface (UI) layer is considered
highly important since it interfaces users to the
software system. Some software companies chose to
build multiple UIs for the same functionality due to
variable user needs. Yet in certain situations the
scope of variability is unknown at design time or it
is costly to develop multiple UI versions manually.

User interface simplicity is an important
requirement for enterprise application users. Some
novice users prefer the UI to be displayed in a step-
by-step wizard whereas advanced users might feel
more productive if the UI is displayed on one page.
Generally, different users require a variable part of
the software’s feature set, which could scatter across
multiple user interfaces. Displaying a significant UI

subset in one place would help users fulfil their
repetitive tasks more efficiently.

One method to achieve UI simplification is for
enterprise applications to be adaptive/adaptable,
respectively referring to the ability of tailoring
software applications automatically/manually.

A more detailed explanation on the adaptive UI
simplification is given in Section 2 through two
practical scenarios. We should emphasize that the
objective of this paper is not to solve both scenarios.
Instead, we intend to propose a general-purpose
solution for creating enterprise applications targeting
such adaptive UI scenarios. One of the scenarios will
be partially addressed as a case study in Section 7.

We adopt a model-driven approach for devising
adaptive/adaptable UI. Hence we differentiate
between the following model-driven approaches:

Static modelling is an approach that relies on
models for UI design and eventually ends in a phase
before code generation. By definition static models
cannot change at runtime, hence are not suitable to
be used beyond the development phase.

Most adaptive model-driven UI approaches in
the literature depend on generative runtime models
of application artefacts that reuse the code already
implemented as a generic UI.

Runtime models are usually more opted for
adaptive features. However, in certain scenarios

72 A. Akiki P., K. Bandara A. and Yu Y..
Using Interpreted Runtime Models for Devising Adaptive User Interfaces of Enterprise Applications.
DOI: 10.5220/0003975800720077
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 72-77
ISBN: 978-989-8565-12-9
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

such as those discussed in Section 2, using runtime
models while maintaining the generated code-based
artefacts is insufficient. Features required in such
adaptive scenarios include runtime support for
actions such as eliminating widgets; replacing a
widget with another; adding new widgets; or
composing a new UI from existing user interfaces.

In contrast, our approach uses interpreted
runtime models such that there is no need to
generate code for creating the UI. Instead, the
models are interpreted at runtime to render the UI.

2 ADAPTIVE SCENARIOS FOR
ENTERPRISE APPLICATIONS

Adapting UI functionality through automatic
simplification could make complex applications
easier to use on mobile devices and by people with
cognitive impairments (Gajos et al. 2010). Tailored
UIs could enhance user satisfaction (McGrenere et
al. 2002) but the manual development cost is high.

The following scenarios are examples for
clarifying the importance of our approach.
Scenario 1: Simplifying Individual User
Interfaces could be based on: “Elimination”,
“Substitution”, and “Realignment” of UI widgets.

We could adjust the UI per user by eliminating
unused features and also consider user level layout
adaptation. The following is one possible example:
1. Beginner: Present UI in wizard form
2. Intermediate: Divide UI among several tabs
3. Expert: Display UI widgets on one page
Scenario 2: Composing New Functionality from
Existing User Interfaces is related to dynamic
“Composition” of new UIs based on existing ones
(defined at design time) and end user behaviour.

One possible application would be on scattered
UIs, which is the case of entering information for an
inventory item in Microsoft Dynamics GP. The main
information entry is done through one UI form. Yet
various sets of item related information (Prices,
Options, etc.) are entered in separate UI forms.

UI composition and decomposition has been
addressed in some research works (Lepreux et al.
2010). Yet the researchers focused on performing
those actions at design time.

3 RELATED WORK

This section briefly summarizes the existing work

that could be classified into reference architectures
and state of the art with possible gaps.

3.1 Architectures

Architectures, which could serve for the purpose of
designing UIs and adaptive systems in general,
could be classified into the following categories:
1. User Interface Abstraction is concerned with the
representation of UIs on multiple levels of
abstraction. The CAMELEON reference framework
is one example.
2. Adaptive System Layering provides a reference
model for adaptive systems in general. Existing
work includes the Three Layer Architecture and
IBM MAPE-K loop.
3. Implementation architectures deal with the
distribution of components in a development
scenario. Common architectural patterns of this sort
include: MVC, MVP, and MVVM.
We will base our proposed architecture on the Three
Layer Architecture (Kramer and Magee, 2007),
CAMELEON (Calvary et al., 2003), and MVC.

3.2 State of the Art

Runtime models constitute an important area of
research in MDE (France & Rumpe 2007). Existing
research works target adaptive UI differently.

The Multi-Access Service Platform (MASP)
targets ubiquitous UI in smart environments and
promotes runtime modelling but still relies on code
for defining the initial UI (Blumendorf et al. 2010).

Supple is introduced as a system mainly capable
of generating interfaces adapted to each user’s motor
abilities (Gajos et al. 2010). Although the adopted
technique generates the UI from an abstract model, it
does not support the various possible levels of
abstraction and designer input on the concrete UI.

The COntext Mouldable widgeT (Comet(s)) was
introduced to support UI plasticity (Calvary et al.
2005). Comets tend to target adaptation of individual
widgets while our target is the entire layout.

DYNAmic MOdel-bAsed user Interface
Development (DynaMo-AID) is presented as part of
the Dygimes UI framework (Clerckx et al. 2004).
This system is mostly concerned with simple mobile
applications. Furthermore, the adopted approach for
generating task trees could lead to a combinatorial
explosion making it hard to use for large scale
enterprise applications.

Using�Interpreted�Runtime�Models�for�Devising�Adaptive�User�Interfaces�of�Enterprise�Applications

73

4 PROPOSED ARCHITECTURE

Our proposed architecture for enterprise applications
with adaptive UI capabilities (CEDAR) is illustrated
in Figure 1. The proposed artefacts column
illustrates the distribution of the adaptive
components according to each of the reference
architectures (Three Layer Architecture,
CAMELEON, and MVC) discussed in Section 3.1.

4.1 Adaptive Components

This section will elaborate on the function of each of
the adaptive components under the four layers.

L1 - Client Components Layer: The components
in this layer will be deployed to the client machine.

The “Context Monitor” will be responsible for
monitoring any changes in the current context. This
component was allocated to the client since it would
be able to monitor changes to the environment in
addition to any changes in the user’s behavior.

The ability to cache data on the client will
provide dynamically generated systems with much
better performance. The “Caching Engine” will be
responsible for caching any part of the model.

The “UI Renderer” will be responsible for
rendering the UI model using one of the existing
presentation technologies. Additionally, this
component will be responsible for managing events,
data binding, and validation by linking the dynamic
UI layout to the application code behind.

L2 - Decision Components Layer: These
components will be deployed to the application
server and will handle decision making in the
adaptive scenario.

The “Context Evaluator” will handle the
information submitted by the “Context Monitor” in
order to evaluate whether the change requires the
models to be adapted.

The “Caching Engine” on the application server
will assume a role similar to that of its counterpart
on the client. Yet in this case the caching will not be
made on the session level for each individual user
but on the application level for all the users.

L3 - Adaptation Components Layer: These
components will be deployed to the application
server and will be responsible for performing the
actual adaptation on the models.

The “Adaptive Engine” will be responsible for
taking a UI model as input and conducting the
adaptation according to one of the adaptive models.

The “Trade off Manager” assumes the role of
balancing the trade-offs between the different

adaptation constraints in order to meet each set of
constraints as much as possible.

The “UIDL Converter” will be responsible for
handling the conversion between the user interface
model (stored as relational data) and the necessary
User Interface Description Language (UIDL).

L4 - Adaptive & User Interface Models Layer:
The adaptive and UI models will be stored on the
database server. A relational database will be used
for managing the various required models.

The adaptive models will represent a generic rule
set according to which the UI models will be
adapted. Such rules will be based on the various
adaptive factors relevant to the changing contexts.

4.2 Adaptive Procedure & Advantages

Two main approaches could be considered for
adapting the UIs of enterprise applications. The
following paragraphs explain the procedure, which
could be mapped to steps S1 to S5 on Figure 1.

The first approach is a direct adaptation. A
change in the context gets reported (S1) to the
“Context Evaluator”. A decision is made on whether
the UI should be adapted. The adaptive engine is
called (S2) for obtaining the new UI. The adaptive
engine will send the adapted UI back for caching
(S4). Then it will be transferred to the client and
modified on the fly (S5).

The second approach differs from the first by the
method through which the adapted UI is handed to
the user. Instead of modifying the UI while the user
is working, the adapted version (S2) is stored (S3)
and the UI is proposed as a new option (S5). This
could be more convenient in many enterprise
scenarios such as those described in Section 2. The
convenience lies in preventing the user from being
confused by a UI that is constantly changing.

An advantage of the proposed architecture is the
separation of concerns allowing the adaptive
functionality to be consumed as a generic service.
Additionally, the layering conceptually allows the
integration of various adaptive models, which in turn
allow the UI to adapt according to different factors.
Previous research works (Section 3.2) focus on
adapting the UI according to specific adaptive
factors (Screen size, physical impairments, distance
from display devices, etc.). A general architecture
could be considered as a more extensible method in
terms of accommodating various types of adaptive
factors within a generic middleware.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

74

Figure 1: Proposed architecture for adaptive user interfaces.

5 UI META-MODEL

User Interface Description Languages (UIDLs) are
used to define technology and modality independent
UI. Several UIDLs (UsiXml, UIML, XIML, etc.)
currently exist. Yet UsiXml is considered to have the
most comprehensive meta-model complying with
the CAMELEON reference framework.
Additionally, it is possible to define mappings and
transformations between the various levels of
abstraction (Tasks & Domain Model, AUI, CUI, and
FUI). Hence we chose to rely on UsiXml’s meta-
models (Guerrero-Garcia et al. 2008) for UI
persistence and transfer. Currently we are only
working with the CUI and the domain model. UML
class diagrams are used to represent domain models
whereas UsiXML’s meta-model is used for the CUI.

As indicated in its definition (www.usixml.org),
UsiXml is not intended to handle all attributes and
events of all widgets in all toolkits but merely a
subset. Yet our dynamic approach would not allow

the UI layout to be defined through code. Hence we
required a level of abstraction capable of making the
model extensible to support a vast subset of features
from different technologies. To achieve that, we
define a UI widget in terms of its “Properties” and
“Events” and allow the designer to extend those
according to different technology profiles. Binding
the UI to the data model is also considered in the
meta-model by defining a “Data Binding” capable of
linking a “Component Property” to a class diagram
“Property”. To validate the input values, “Validation
Rules” could be defined on the data-bindings for
checking a value before committing it to the data
source. We should note that setting the property
values in addition to tying up the events, and
bindings will be fully conducted at runtime through
the “UI Renderer” depicted in Figure 1.

In order to link the layout to the code behind, the
developer will have to attach a “Code Behind
Method” to a widget event in a similar manner to
how it is done under a regular IDE.

Using�Interpreted�Runtime�Models�for�Devising�Adaptive�User�Interfaces�of�Enterprise�Applications

75

6 TOOL SUPPORT

The CUI designer of the IDE we devised for creating
enterprise UIs with runtime adaptive abilities is
illustrated in Figure 2. Although the architecture is
intended to encompass the various abstraction levels
of the CAMELEON framework the tool support at
this stage is limited to the CUI and Domain Model.

Developers’ productivity and their understanding
of the methodology are critical for maintaining a
reasonable software development cost. Since many
developers tend not to understand modelling very
well, we adopted a familiar development approach.
Our tool encompasses a visual designer for UI
development, which is quite similar to those present
in widely adopted IDE’s such as Visual Studio.NET,
NetBeans, Eclipse, etc. This type of tool will allow
developers to create the user interface in a traditional
manner by dragging and dropping widgets onto a
canvas. Additionally, developers could click on each
widget in order to adjust its properties or to tie up its
events to a code behind method.

This tool was developed with C# using both
Windows Forms and the Windows Presentation
Foundation (WPF) for the UI. Currently the model
related data is being stored in an SQL Server 2008

database but other database management systems
could be also used. The adaptive middleware was
developed using the Windows Communication
Foundation (WCF) in order to make it accessible
from anywhere (web or intranet) as a service. To
test out our approach we had to develop a rendering
engine for at least one presentation technology. WPF
was the technology of choice but with the existence
of the meta-models the UI rendering engine could be
easily adapted for other technologies as well.

As previously noted this tool is not fully
developed since we still need to incorporate visual
designers for the abstract UI and task trees. Adding
those will provide full tool support for the proposed
architecture and the ability to adapt the UI at the
different levels of abstraction. This will be done by
keeping in mind the need to maintain a familiar
development approach. In spite of that, at this stage
developers could use the tool to create fully
functional UIs with the existing designers.

7 EVALUATION CASE STUDY

To assess our proposal, we conducted a case study
based partially on Scenario 1 discussed in Section 2.

Figure 2: Our concrete user interface designer.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

76

The standard for role based access control
(RBAC) could be utilized by enterprises for
protecting digital resources (Ferraiolo et al. 2001). In
RBAC, “Users” are assigned “Roles”, which are in
turn assigned permissions on “Resources”. In our
case, the UI is the resource we need to secure.

Table 1: CRUD to UI property mappings.

CRUD Permission UI Property Value
Allow / Deny (Create) isEnabled True / False
Allow / Deny (Delete) isEnabled True / False
Allow / Deny (Read) isVisible True / False

Allow / Deny (Update) isEnabled True / False

Table 1 lists the mapping between the CRUD

permissions and UI-specific properties. The
“Create” and “Delete” permissions are applied on
the domain model UML classes whereas “Read” and
“Update” are applied on UML class properties.

To demonstrate that the proposed method is not
only meant for newly developed applications we
chose an existing open source dental practice
software called OpenDental (www.opendental.com).
We selected the “Claims” form, illustrated in the UI
studio in Figure 2. It has 87 widgets of 9 different
types, and was reverse engineered from code into
relational data based on our proposed meta-model.

We tested the performance of the dynamic UI,
which loads all the widgets at runtime from a
database, versus the code based compiled UI.

Both versions of the “Claims” form were loaded
and closed 1000 times. The time was plotted on the
graph illustrated in Figure 3. The dynamic UI took
slightly more time when it was loaded the first time
then the caching allowed a significant drop in the
time. Overall we could say that our approach will
not incur negative impact on performance.

Figure 3: User interface performance.

8 CONCLUSIONS

Adaptive user interfaces could be considered as a

means for addressing variations in the needs of
enterprise application users without incurring a high
increase in the cost of developing such applications.

In this paper, we have presented an approach that
uses interpreted runtime models for creating
enterprise applications, which makes it easier to
realize both adaptive and adaptable user interfaces.
Additionally, the dynamic model-driven nature of
the proposed method could make enterprise
applications more resilient to change in both
technology and business requirements.

In the future we will adopt the proposed
approach as a basis for devising an adaptive solution
for the scenarios discussed in Section 2.

REFERENCES

Blumendorf, Marco, Lehmann, Grzegorz and Albayrak,
Sahin, (2010). ‘Bridging Models and Systems at
Runtime to Build Adaptive User Interfaces’.

Calvary, Gaëlle, Coutaz, Joëlle, Dâassi, Olfa, Balme,
Lionel and Demeure, Alexandre, (2005). ‘Towards a
New Generation of Widgets for Supporting Software
Plasticity: The ”Comet”.

Calvary, Gaëlle, Coutaz, Joëlle, Thevenin, David,
Limbourg, Quentin, et al., (2003). ‘A Unifying
Reference Framework for Multi-Target User
Interfaces’.

Clerckx, Tim, Luyten, Kris and Coninx, Karin, (2004).
‘DynaMo-AID: a Design Process and a Runtime
Architecture for Dynamic Model-based User Interface
Development’.

Ferraiolo, David F., Sandhu, Ravi, Gavrila, Serban, Kuhn,
D. Richard and Chandramouli, Ramaswamy, (2001).
‘Proposed NIST standard for role-based access
control’.

France, Robert and Rumpe, Bernhard, (2007). ‘Model-
Driven Development of Complex Software: A
Research Roadmap’.

Gajos, Krzysztof Z., Weld, Daniel S. and Wobbrock,
Jacob O., (2010). ‘Automatically Generating
Personalized User Interfaces with Supple’.

Guerrero-Garcia, Josefina, Vanderdonckt, Jean and
Gonzalez-Calleros, Juan Manuel, (2008). ‘Towards a
Multi-User Interaction Meta-Model’.

Kramer, Jeff and Magee, Jeff, (2007). ‘Self-Managed
Systems: an Architectural Challenge’.

Lepreux, Sophie, Vanderdonckt, Jean and Kolski,
Christophe, (2010). ‘User Interface Composition with
UsiXML’.

McGrenere, Joanna, Baecker, Ronald M. and Booth,
Kellogg S., (2002). ‘An Evaluation of a Multiple
Interface Design Solution for Bloated Software’.

Using�Interpreted�Runtime�Models�for�Devising�Adaptive�User�Interfaces�of�Enterprise�Applications

77

